期刊文献+
共找到925篇文章
< 1 2 47 >
每页显示 20 50 100
Downscaling Seasonal Precipitation Forecasts over East Africa with Deep Convolutional Neural Networks
1
作者 Temesgen Gebremariam ASFAW Jing-Jia LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期449-464,共16页
This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that co... This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that compare different CNN configurations and deployed the best-performing architecture to downscale one-month lead seasonal forecasts of June–July–August–September(JJAS) precipitation from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0(NUIST-CFS1.0) for 1982–2020. We also perform hyper-parameter optimization and introduce predictors over a larger area to include information about the main large-scale circulations that drive precipitation over the East Africa region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results show that the CNN-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme precipitation spatial patterns. Besides, CNN-based downscaling yields a much more accurate forecast of extreme and spell indicators and reduces the significant relative biases exhibited by the raw model predictions. Moreover, our results show that CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of East Africa. The results demonstrate the potential usefulness of CNN in downscaling seasonal precipitation predictions over East Africa,particularly in providing improved forecast products which are essential for end users. 展开更多
关键词 East Africa seasonal precipitation forecasting DOWNSCALING deep learning convolutional neural networks(CNNs)
下载PDF
Temporal and Spatial Variation Characteristics of Precipitation during Crop Growing Season in Northeast China 被引量:1
2
作者 李秀芬 李帅 +2 位作者 纪瑞鹏 郭春明 姜丽霞 《Agricultural Science & Technology》 CAS 2010年第6期137-140,168,共5页
[Objective] The aims were to understand variation characteristics of water resources and provide theoretical guidance for the formulation of agricultural irrigation methods.[Method] Taking the precipitation records du... [Objective] The aims were to understand variation characteristics of water resources and provide theoretical guidance for the formulation of agricultural irrigation methods.[Method] Taking the precipitation records during crop growing season(from April to September)observed by 177 weather stations from 1971 to 2008 in the three provinces of Northeast China(Heilongjiang,Jilin and Liaoning)as research data,annual change and spatial distribution characteristics of precipitation during crop growing season were analyzed by means of small grid interpolation and climatic trend rate.[Result] The precipitation during crop growing season general exhibited the decreasing trend and the precipitation trend rate was-8.6 mm/10a in Northeast China.In addition,there was lack of rain from 1971 to 1980 and relatively abundant of rain during 1981 and 1990 respectively.Moreover,the precipitation obviously exhibited decreasing trend from 1991 to 2008.But the decreasing trend was inconsistent in spatial distributions,that was,the precipitation slightly increased in relatively rainless areas and obviously decreased in relatively rainy areas.[Conclusion] The areas with obvious decreasing trend of precipitation during crop growing season are the main grain producing zones in Northeast China,so the problem of food production security caused by the precipitation changes should be paid enough attention. 展开更多
关键词 Regions in the Northeast China precipitation during crop growing season Temporal and spatial Variations
下载PDF
Relationships between Western Pacific Subtropical High and Seasonal Precipitation in Eastern China
3
作者 程肖侠 石正国 李万莉 《Meteorological and Environmental Research》 CAS 2010年第4期81-86,共6页
The monthly observed average precipitation data of 160 meteorological stations in China from 1960 to 2007,had been reorganized by the China Meteorological Administration.By employing that precipitation data,NCEP/NCAR ... The monthly observed average precipitation data of 160 meteorological stations in China from 1960 to 2007,had been reorganized by the China Meteorological Administration.By employing that precipitation data,NCEP/NCAR reanalysis data and the index of intensity of western Pacific subtropical high,the seasonal variations of subtropical high and precipitation in eastern China during the past decades are discussed.The relationships between them also are discussed by correlation and composite analyses.The results show that the intensity of subtropical high,which has significantly strengthened in the recent 50 years,especially in spring,autumn and winter,has notable impact on the simultaneous rainfall in the eastern region of China for all seasons,especially in winter. 展开更多
关键词 precipitation in eastern China Intensity of subtropical high seasonal variation Atmospheric circulation China
下载PDF
Seasonal Characteristics of Precipitation in 1998 over East Asia as Derived from TRMM PR 被引量:17
4
作者 傅云飞 林一骅 +1 位作者 刘国胜 王强 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第4期511-529,共19页
Precipitation radar data derived from the Tropical Rainfall Measuring Mission (TRMM) satellite are used to study precipitation characteristics in 1998 over East Asia (10?38癗, 100C-145癊), especially over mid-latitude... Precipitation radar data derived from the Tropical Rainfall Measuring Mission (TRMM) satellite are used to study precipitation characteristics in 1998 over East Asia (10?38癗, 100C-145癊), especially over mid-latitude land (continental land) and ocean (East China Sea and South China Sea). Results are compared with precipitations in the tropics. Yearly statistics show dominant stratiform rain events over East Asia (about 83.7% by area fraction) contributing to 50% of the total precipitation. Deep convective rains contribute 48% to the total precipitation with a 13.7% area fraction. The statistics also show the unimportance of warm convective rain in East Asia, contributing 1.5% to the total precipitation with a 2.7% area fraction. On a seasonal scale, the results indicate that the rainfall ratio of stratiform rain to deep convective rain is proportional to their rainfall pixel ratio. Seasonal precipitation patterns compare well between Global Precipitation Climatology Project rainfall and TRMM PR measurements except in summer. Studies indicate a clear opposite shift of rainfall amount and events between deep convective and stratiform rains in the meridional in East Asia, which corresponds to the alternative activities of summer monsoon and winter monsoon in the region. The vertical structures of precipitation also exhibit strong seasonal variability in precipitation Contoured Rainrate by Altitude Diagrams (CRADs) and mean profiles in the mid-latitudes of East Asia. However, these structures in the South China Sea are of a tropical type except in winter. The analysis of CRADs reveals a wide range of surface rainfall rates for most deep convective rains, especially in the continental land, and light rain rate for most stratiform rains in East Asia, regardless of over land or ocean. 展开更多
关键词 TRMM PR seasonal variability precipitation structure
下载PDF
Humidity Effect and Its Influence on the Seasonal Distribution of Precipitation δ^(18)O in Monsoon Regions 被引量:7
5
作者 章新平 刘晶淼 +2 位作者 何元庆 田立德 姚檀栋 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第2期271-277,共7页
The humidity effect, namely the markedly positive correlation between the stable isotopic ratio in precipitation and the dew-point deficit ATd in the atmosphere, is put forward firstly and the relationships between t... The humidity effect, namely the markedly positive correlation between the stable isotopic ratio in precipitation and the dew-point deficit ATd in the atmosphere, is put forward firstly and the relationships between the δ18O in precipitation and ATd are analyzed for the Urumqi and Kunming stations, which have completely different climatic characteristics. Although the seasonal variations in δ18O and △Td exhibit differences between the two stations, their humidity effect is notable. The correlation coefficient and its confidence level of the humidity effect are higher than those of the amount effect at Kunming, showing the marked influence of the humidity conditions in the atmosphere on stable isotopes in precipitation. Using a kinetic model for stable isotopic fractionation, and according to the seasonal distribution of mean monthly temperature at 500 hPa at Kunming, the variations of the δ18O in condensate in cloud are simulated. A very good agreement between the seasonal variations of the simulated mean δ18O and the mean monthly temperature at 500 hPa is obtained, showing that the oxygen stable isotope in condensate of cloud experiences a temperature effect. Such a result is markedly different from the amount effect at the ground. Based on the simulations of seasonal variations of δ18O in falling raindrops, it can be found that, in the dry season from November to April, the increasing trend with falling distance of δ18O in falling raindrops corresponds remarkably to the great △Td, showing a strong evaporation enrichment function in falling raindrops; however, in the wet season from May to October, the δ18O in falling raindrops displays an unapparent increase corresponding to the small △Td, except in May. By comparing the simulated mean δ18O at the ground with the actual monthly δ18O in precipitation, we see distinctly that the two monthly δ18O variations agree very well. On average, the δ18O values are relatively lower because of the highly moist air, heavy rainfall, small ATd and weak evaporation enrichment function of stable isotopes in the falling raindrops, under the influence of vapor from the oceans; but they are relatively higher because of the dry air, light rainfall, great △Td and strong evaporation enrichment function in falling raindrops, under the control of the continental air mass. Therefore, the δ18O in precipitation at Kunming can be used to indicate the humidity situation in the atmosphere to a certain degree, and thus indicate the intensity of the precipitation and the strength of the monsoon indirectly. The humidity effect changes not only the magnitude of the stable isotopic ratio in precipitation but also its seasonal distribution due to its influence on the strength of the evaporation enrichment of stable isotopes in falling raindrops and the direction of the net mass transfer of stable isotopes between the atmosphere and the raindrops. Consequently, it is inferred that the humidity effect is probably one of the foremost causes generating the amount effect. 展开更多
关键词 humidity effect dew-point deficit stable isotope seasonal variation precipitation
下载PDF
Precipitation Changes in Wet and Dry Seasons over the 20th Century Simulated by Two Versions of the FGOALS Model 被引量:3
6
作者 MA Shuangmei ZHOU Tianjun 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第6期839-854,共16页
Seasonal precipitation changes over the globe during the 20th century simulated by two versions of the Flexible Global Ocean-Atmosphere-Land System (FGOALS) model are assessed. The two model versions differ in terms... Seasonal precipitation changes over the globe during the 20th century simulated by two versions of the Flexible Global Ocean-Atmosphere-Land System (FGOALS) model are assessed. The two model versions differ in terms of their AGCM component, but the remaining parts of the system are almost identical. Both models reasonably reproduce the mean-state features of the timings of the wet and dry seasons and related precipitation amounts, with pattern correlation coefficients of 0.65-0.84 with observations. Globally averaged seasonal precipitation changes are analyzed. The results show that wet sea- sons get wetter and the annual range (precipitation difference between wet and dry seasons) increases during the 20th century in the two models, with positive trends covering most parts of the globe, which is consistent with observations. However, both models show a moistening dry season, which is opposite to observations. Analysis of the globally averaged moisture budget in the historical climate simulations of the two models shows little change in the horizontal moisture advection in both the wet and dry seasons. The globally averaged seasonal precipitation changes are mainly dominated by the changes in evaporation and vertical moisture advection. Evaporation and vertical moisture advection combine to make wet seasons wetter and enhance the annual range. In the dry season, the opposite change of evaporation and vertical moisture advection leads to an insignificant change in precipitation. Vertical moisture advection is the most important term that determines the changes in precipitation, wherein the thermodynamic component is dominant and the dynamic component tends to offset the effect of the thermodynamic component. 展开更多
关键词 20th century historical climate simulation FGOALS-g2 FGOALS-s2 wet season dry season precipitation change water vapor budget diagnosis
下载PDF
Seasonal dynamics of soil water content in the typical vegetation and its response to precipitation in a semi-arid area of Chinese Loess Plateau 被引量:6
7
作者 ZHOU Tairan HAN Chun +3 位作者 QIAO Linjie REN Chaojie WEN Tao ZHAO Changming 《Journal of Arid Land》 SCIE CSCD 2021年第10期1015-1025,共11页
Soil water content is a key limiting factor for vegetation growth in the semi-arid area of Chinese Loess Plateau and precipitation is the main source of soil water content in this area.To further understand the impact... Soil water content is a key limiting factor for vegetation growth in the semi-arid area of Chinese Loess Plateau and precipitation is the main source of soil water content in this area.To further understand the impact of vegetation types and environmental factors such as precipitation on soil water content,we continuously monitored the seasonal dynamics in soil water content in four plots(natural grassland,Caragana korshinskii,Armeniaca sibirica and Pinus tabulaeformis)in Chinese Loess Plateau.The results show that the amplitude of soil water content fluctuation decreases with an increase in soil depth,showing obvious seasonal variations.Soil water content of artificial vegetation was found to be significantly lower than that of natural grassland,and most precipitation events have difficulty replenishing soil water content below a depth of 40 cm.Spring and autumn are the key seasons for replenishment of soil water by precipitation.Changes in soil water content are affected by precipitation,vegetation types,soil evaporation and other factors.The interception effect of vegetation on precipitation and the demand for water consumption by transpiration are the key factors affecting the efficiency of soil water replenishment by precipitation in this area.Due to artificial vegetation plantation in this area,soil will face a water deficit crisis in the future. 展开更多
关键词 soil water content vegetation type precipitation seasonal change EVAPORATION
下载PDF
Changes in Seasonal Patterns of Temperature and Precipitation in China During 1971-2000 被引量:2
8
作者 宋连春 A.J.CANNON P.H.WHITFIELD 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第3期459-473,共15页
Many studies have shown evidence for significant changes in surface climate in different regions of the world and during different seasons over the past 100 years. Based on daily temperature and precipitation data fro... Many studies have shown evidence for significant changes in surface climate in different regions of the world and during different seasons over the past 100 years. Based on daily temperature and precipitation data from 720 climate stations in China, cluster analysis was used to identify regions in China that have experienced similar changes in the seasonal cycle of temperature and precipitation during the 1971-2000 climate normal period. Differences in 11-day averages of daily mean temperature and total precipitation between the first (1971-1985) and second (1986-2000) halves of the record were analyzed using the Mann- Whitney U test and the global κ-means clustering algorithm. Results show that most parts of China experienced significant increases in temperature between the two periods, especially in winter, although some of this warming may be attributable to the urban heat island effect in large cities. Most of western China experienced more precipitation in 1986-2000, while precipitation decreased in the Yellow River valley. Changes in the summer monsoon were also evident, with decreases in precipitation during the onset and decay phases, and increases during the wettest period. 展开更多
关键词 κ-means clustering seasonALITY TRENDS TEMPERATURE precipitation China
下载PDF
Evaluating the Capabilities of Soil Enthalpy, Soil Moisture and Soil Temperature in Predicting Seasonal Precipitation 被引量:3
9
作者 Changyu ZHAO Haishan CHEN Shanlei SUN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第4期445-456,共12页
Soil enthalpy (H) contains the combined effects of both soil moisture (w) and soil temperature (T) in the land surface hydrothermal process. In this study, the sensitivities of H to w and T are investigated usin... Soil enthalpy (H) contains the combined effects of both soil moisture (w) and soil temperature (T) in the land surface hydrothermal process. In this study, the sensitivities of H to w and T are investigated using the multi-linear regression method. Results indicate that T generally makes positive contributions to H, while w exhibits different (positive or negative) impacts due to soil ice effects. For example, w negatively contributes to H if soil contains more ice; however, after soil ice melts, w exerts positive contributions. In particular, due to lower w interannual variabilities in the deep soil layer (i.e., the fifth layer), H is more sensitive to T than to w. Moreover, to compare the potential capabilities of H, w and T in precipitation (P) prediction, the Huanghe-Huaihe Basin (HHB) and Southeast China (SEC), with similar sensitivities of H to w and T, are selected. Analyses show that, despite similar spatial distributions of H-P and T-P correlation coefficients, the former values are always higher than the latter ones. Furthermore, H provides the most effective signals for P prediction over HHB and SEC, i.e., a significant leading correlation between May H and early summer (June) P. In summary, H, which integrates the effects of T and w as an independent variable, has greater capabilities in monitoring land surface heating and improving seasonal P prediction relative to individual land surface factors (e.g., T and w). 展开更多
关键词 seasonal precipitation prediction land surface process soil enthalpy soil moisture soil temperature
下载PDF
Seasonal Prediction of Summer Precipitation over East Africa Using NUIST-CFS1.0 被引量:2
10
作者 Temesgen Gebremariam ASFAW Jing-Jia LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第3期355-372,553-557,共23页
East Africa is particularly vulnerable to precipitation variability, as the livelihood of much of the population depends on rainfed agriculture. Seasonal forecasts of the precipitation anomalies, when skillful, can th... East Africa is particularly vulnerable to precipitation variability, as the livelihood of much of the population depends on rainfed agriculture. Seasonal forecasts of the precipitation anomalies, when skillful, can therefore improve implementation of coping mechanisms with respect to food security and water management. This study assesses the performance of Nanjing University of Information Science and Technology Climate Forecast System version 1.0(NUISTCFS1.0) on forecasting June–September(JJAS) seasonal precipitation anomalies over East Africa. The skill in predicting the JJAS mean precipitation initiated from 1 May for the period of 1982–2019 is evaluated using both deterministic and probabilistic verification metrics on grid cell and over six distinct clusters. The results show that NUIST-CFS1.0 captures the spatial pattern of observed seasonal precipitation climatology, albeit with dry and wet biases in a few parts of the region. The model has positive skill across a majority of Ethiopia, Kenya, Uganda, and Tanzania, whereas it doesn’t exceed the skill of climatological forecasts in parts of Sudan and southeastern Ethiopia. Positive forecast skill is found over regions where the model shows better performance in reproducing teleconnections related to oceanic SST. The prediction performance of NUIST-CFS1.0 is found to be on a level that is potentially useful over a majority of East Africa. 展开更多
关键词 East Africa seasonal precipitation forecasts probabilistic verification ensemble prediction
下载PDF
INFLUENCES OF LOW-FREQUENCY MOISTURE TRANSPORTATION ON LOW FREQUENCY PRECIPITATION ANOMALIES IN THE ANNUALLY FIRST RAINY SEASON OF SOUTH CHINA IN 2010 被引量:1
11
作者 李丽平 许冠宇 +1 位作者 倪碧 柳艳菊 《Journal of Tropical Meteorology》 SCIE 2016年第S1期46-56,共11页
85-station daily precipitation data from 1961-2010 provided by the National Meteorological Information Center and the NCEP/NCAR 2010 daily reanalysis data are used to investigate the low-frequency variability on the p... 85-station daily precipitation data from 1961-2010 provided by the National Meteorological Information Center and the NCEP/NCAR 2010 daily reanalysis data are used to investigate the low-frequency variability on the precipitation of the first rain season and its relationships with moisture transport in South China,and channels of low-frequency water vapor transport and sources of low-frequency precipitation are revealed.The annually first raining season precipitation in 2010 is mainly controlled by 10-20 d and 30-60 d oscillation.The rainfall is more(interrupted) when the two low-frequency components are in the same peak(valley) phase,and the rainfall is less when they are superposed in the inverse phase.The 10-20 d low-frequency component of the moisture transport is more active than the 30-60 d.The10-20 d water vapor sources lie in the South India Ocean near 30° S,the area between Sumatra and Kalimantan Island(the southwest source),and the equatorial middle Pacific region(the southeast source),and there are corresponding southwest and southeast moisture transport channels.By using the characteristics of 10-20 d water vapor transport anomalous circulation,the corresponding low-frequency precipitation can be predicted 6 d ahead. 展开更多
关键词 LOW-FREQUENCY precipitation characteristics wavelet analysis LOW-FREQUENCY vapor sources annually annually FIRST RAINY season of South China
下载PDF
IMPACT OF SSTA OF SOUTHERN HEMISPHERE ON FLOOD SEASON PRECIPITATION ANOMALIES IN YUNNAN 被引量:1
12
作者 杨竹云 杨素雨 +2 位作者 严华生 张瑾文 古书鸿 《Journal of Tropical Meteorology》 SCIE 2015年第3期255-264,共10页
Based on the reanalysis data of monthly mean global SST and wind from the NCEP/NCAR and the observation data of rain seasons in 124 stations of Yunnan province from 1961 to 2006, we applied the analytical methods of c... Based on the reanalysis data of monthly mean global SST and wind from the NCEP/NCAR and the observation data of rain seasons in 124 stations of Yunnan province from 1961 to 2006, we applied the analytical methods of correlation analysis and composite analysis and a significance testing method to two sets of samples of average differences. The goal is to investigate into the influence of the Southern Hemispheric(SH) SST on the summer precipitation in Yunnan from January to May so as to identify the key time and marine regions. Physical mechanisms are obtained by analyzing the influence of sea level wind and the key marine regions on the precipitation during Yunnan's rain season.Results show that there is indeed significant relationship between the SST in SH and summer precipitation in Yunnan.The key areas for influencing the summer precipitation are mainly distributed in a region called "West Wind Drift" in the SH, including the Southeast Indian, southern Australia, west coast of eastern Pacific off Chile, Peru and the southwest Atlantic Magellan. Besides, the most significant marine region is the west coast of Chile and Peru(cold-current areas of the eastern Pacific). Diagnostic analysis results also showed that monsoons in the Bay of Bengal, a cross-equatorial flow in the Indian Ocean near the equator and southwest monsoon in India weaken during the warm phase of the Peruvian cold current in the eastern Pacific. Otherwise, they strengthen. 展开更多
关键词 SST of Southern Hemisphere YUNNAN precipitation anomalies during rain season key marine area West Wind Drift
下载PDF
Characteristics of abrupt changes of snow cover and seasonal freeze-thaw layer in the Tibetan Plateau and their impacts on summer precipitation in China 被引量:1
13
作者 Rong Gao HaiLing Zhong +1 位作者 WenJie Dong ZhiGang Wei 《Research in Cold and Arid Regions》 2011年第1期24-30,共7页
In this paper, a variation series of snow cover and seasonal freeze-thaw layer from 1965 to 2004 on the Tibetan Plateau has been established by using the observation data from meteorological stations. The sliding T-te... In this paper, a variation series of snow cover and seasonal freeze-thaw layer from 1965 to 2004 on the Tibetan Plateau has been established by using the observation data from meteorological stations. The sliding T-test, M-K test and B-G algorithm are used to verify abrupt changes of snow cover and seasonal freeze-thaw layer in the Tibetan plateau. The results show that the snow cover has not undergone an abrupt change, but the seasonal freeze-thaw layer obviously witnessed a rapid degradation in 1987, with the frozen soil depth being reduced by about 15 cm. It is also found that when there ~s less snow in the plateau region, precipitation in South China and Southwest China increases. But when the frozen soil is deep, precipitation in most of China apparently decreases. Both snow cover and seasonal freeze-thaw layer on the plateau can be used to predict the summer precipitation in China. However, if the impacts of snow cover and seasonal freeze-thaw layer are used at the same time, the predictability of summer precipitation can be significantly improved. The significant correlation zone of snow is located in middle reaches of the Yangtze River covering the Hexi Corridor and northeastern Inner Mongolia, and the seasonal freeze-thaw layer exists in Mt. Nanling, northern Shannxi and northwestern part of North China. The significant correlation zone of simultaneous impacts of snow cover and seasonal freeze-thaw layer is larger than that of either snow cover or seasonal freeze-thaw layer. There are three significant correlation zones extending from north to south: the north zone spreads from Mr. Daxinganling to the Hexi Corridor, crossing northern Mt. Taihang and northern Shannxi; the central zone covers middle and lower reaches of the Yangtze River; and the south zone extends from Mt. Wuyi to Yunnan and Guizhou Plateau through Mt. Nanling. 展开更多
关键词 Tibetan Plateau snow cover seasonal freeze-thaw layer precipitation
下载PDF
Comparisons on seasonal and annual variations of δ^(18)O in precipitation 被引量:1
14
作者 ZHANGXinping YAOTandong 《Journal of Geographical Sciences》 SCIE CSCD 2004年第2期193-203,共11页
The spatial and temporal variations of stable oxygen isotope in precipitation on different time scales are analyzed according to the data from the IAEA/WMO stations with long survey series in the Northern Hemisphere. ... The spatial and temporal variations of stable oxygen isotope in precipitation on different time scales are analyzed according to the data from the IAEA/WMO stations with long survey series in the Northern Hemisphere. Temperature effect is mainly distributed in mid-high latitudes on seasonal scale except for Bamako and Addisababa stations. The δ 18 O/temperature slope displays the positive correlation against altitude for most of the statistical stations. Amount effect appears primarily in the region south of 30 o N and coastal areas. The δ 18 O/precipitation slope is indirectly proportional to precipitation amount. For some of the sampling stations at mid-high latitudes where their seasonal distribution of precipitation is contrary to that of temperature, coupled with temperature effect, the amount effect appears synchronistically. Either the temperature effect or the amount effect on seasonal scale, there are positive correlations to a certain extent between the annual weighted mean δ 18 O and the annual mean temperature for almost all the stations. The correlation between composite δ 18 O and temperature on spatial scale is much more marked, compared with that of individual station. There is a good agreement between 10-year moving average temperature curves I and II, with the values of the former all markedly smaller than corresponding ones of the latter, calculated by the monthly mean series group I and the annual mean series group II, respectively. However, two calculated d δ 18 O/d T curves display the distinct difference: the variation amplitude of slope series II is larger than that of slope series I. Both curves had similar ascending trend from the 1960s to the 1970s, and then, their variations display the anti-phase. Moreover, the analyses show that there is negative correlation between slope series II and temperature series II. However, the status is different for slope series I and temperature series I. Both series have contrary trend from the 1960s to the 1970s, whereas the same trend since the 1980s. 展开更多
关键词 precipitation stable isotope temperature effect amount effect seasonal change annual change
下载PDF
Quantifying the Spatial Characteristics of the Moisture Transport Affecting Precipitation Seasonality and Recycling Variability in Central Asia 被引量:1
15
作者 Linhao ZHONG Lijuan HUA +2 位作者 Zhaohui GONG Yao YAO Lin MU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第6期967-984,共18页
Moisture contribution and transport pathways for Central Asia(CA)are quantitatively examined using the Lagrangian water cycle model based on reanalysis and observational data to explain the precipitation seasonality a... Moisture contribution and transport pathways for Central Asia(CA)are quantitatively examined using the Lagrangian water cycle model based on reanalysis and observational data to explain the precipitation seasonality and the moisture transport variation during 1979-2015.Westerly-related(northwesterly and westerly)transport explains 42%of CA precipitation and dominates in southwest CA,where precipitation is greatest in the cold season.Southeast CA,including part of Northwest China,experiences its maximum precipitation in the warm season and is solely dominated by southerly transport,which explains about 48%of CA precipitation.The remaining 10%of CA precipitation is explained by northerly transport,which steadily impacts north CA and causes a maximum in precipitation in the warm season.Most CA areas are exposed to seasonally varying moisture transport,except for southeast and north CA,which are impacted by southerly and northerly transport year-round.In general,the midlatitude westerlies-driven transport and the Indian monsoon-driven southerly-related transport explain most of the spatial differences in precipitation seasonality over CA.Moreover,the contribution ratio of local evaporation in CA to precipitation exhibits significant interdecadal variability and a meridionally oriented tripole of moisture transport anomalies.Since the early 2000s,CA has experienced a decade of anomalously low local moisture contribution,which seems jointly determined by the weakened moisture contribution from midlatitudes(the Atlantic,Europe,and CA itself)and the enhanced contribution from high latitudes(West Siberia and the Arctic)and tropical areas(South Asia and the Indian Ocean). 展开更多
关键词 Central Asia precipitation seasonality recycling ratio moisture transport dynamical recycling model interdecadal variability
下载PDF
ON THE RELATIONSHIP BETWEEN PRECIPITATION ANOMALIES IN THE FIRST RAINING SEASON (APRIL-JUNE) IN SOUTHERN CHINA AND SST OVER OFFSHORE WATERS IN CHINA 被引量:1
16
作者 邓立平 王谦谦 《Journal of Tropical Meteorology》 SCIE 2002年第1期75-84,共10页
Precipitation anomalies in the first raining season of southern China were analyzed,with the suggestion that there are obvious interannual variation of peak values.In the raining season,the general tendency of precipi... Precipitation anomalies in the first raining season of southern China were analyzed,with the suggestion that there are obvious interannual variation of peak values.In the raining season,the general tendency of precipitation is not obvious and the anomalous oscillation is multi-scale.Corresponding to years of more or less precipitation in the raining season,there are sharply opposite distribution across the nation in the simultaneous periods.In addition,by studying the distribution of correlation between anomalous precipitation in southern China in the first raining season and SSTA over offshore waters of China in the preceding period (June ~August of the previous year),a sensitive zone of waters has been found that has steady effect on the precipitation of southern China in the season.Discussions are also made of the sensitive period,its simultaneous SSTA and subsequent anomalous circulation field in relation to precipitation anomalies and simultaneous circulation field in the first raining season of southern China.In the last part of the work,relationship between the SSTA in the sensitive zone and global SSTA is analyzed.A possible mechanism by which SSTA in offshore Chinese waters affects the precipitation anomalies in the first raining season of southern China is put forward. 展开更多
关键词 precipitation anomalies first raining season of southern China circulation characteristics sensitive sea waters SSTA
下载PDF
PRELIMINARY DISCUSSIONS OF BASIC CLIMATIC CHARACTERISTICS OF PRECIPITATION DURING RAINING SEASONS IN REGIONS SOUTH OF CHANGJIANG RIVER AND ITS RELATIONSHIP WITH SST ANOMALIES 被引量:1
17
作者 陈绍东 王谦谦 钱永甫 《Journal of Tropical Meteorology》 SCIE 2003年第2期191-200,共10页
Basic climatic characteristics are analyzed concerning the precipitation anomalies in raining seasons over regions south of the Changjiang River (the Yangtze). It finds that the regions are the earliest in eastern Chi... Basic climatic characteristics are analyzed concerning the precipitation anomalies in raining seasons over regions south of the Changjiang River (the Yangtze). It finds that the regions are the earliest in eastern China where raining seasons begin and end. Precipitation there tends to decrease over the past 50 years. Waters bounded by 9(S -1(S, 121(E - 129(E are the key zones of SST anomalies that affect the precipitation in these regions over May ~ July in preceding years. Long-term air-sea interactions make it possible for preceding SST anomalies to affect the general circulation that come afterwards, causing precipitation anomalies in the raining seasons in regions south of the Changjiang River in subsequent years. 展开更多
关键词 precipitation anomalies in raining seasons of regions south of Changjiang River SST anomalies correlation analysis
下载PDF
Explicit and Parameterized Episodes of Warm-Season Precipitation over the Continental United States 被引量:1
18
作者 Mitchell W. MONCRIEFF John D. TUTTLE Richard E. CARBONE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第1期91-105,共15页
This paper describes explicit and parameterized simulations of midsummer precipitation over the continental United States for two distinct episodes: moderate large-scale forcing and weak forcing. The objective is to ... This paper describes explicit and parameterized simulations of midsummer precipitation over the continental United States for two distinct episodes: moderate large-scale forcing and weak forcing. The objective is to demonstrate the capability of explicit convection at currently affordable grid-resolution and compare it with parameterized realizations. Under moderate forcing, 3-kin grid-resolution explicit simulations represent rainfall coherence remarkably well. The observed daily convective generation near the Continental Divide and the subsequent organization and propagation are reproduced qualitatively. The propagation speed, zonal extent and duration of the rainfall streaks compare favorably with their observed counterparts, although the streak frequency is underestimated. The simulations at -10-km grid-resolution applying conventional convective parameterization schemes also replicate reasonably well the diurnal convective regeneration in moderate forcing. The performance of the 3-km grid-resolution model demonstrates the potential of -1-km-resolution explicit cloud-resolving models for the prediction of warm season precipitation for moderately forced environments. In weak forcing conditions, however, predictions of precipitation coherence and diurnal variability are much poorer. This suggests that an even finer resolution explicit model is required to adequately treat convective initiation and upscale organization typical of the warm season over the continental U.S. 展开更多
关键词 warm-season precipitation explicit simulation convective parameterization
下载PDF
PRECIPITATION PATTERNS IN FLOOD SEASON OVER CHINA ASSOCIATED WITH THE EL NI■O/SOUTHERN OSCILIATION
19
作者 钱步东 《Chinese Geographical Science》 SCIE CSCD 1997年第3期220-228,共9页
The precipitation patterns in flood season over China associated with the EI Nino/Southern Oscillation (ENSO) are investigated, especially in the eastern China, using the rather long period rainfall data in this centu... The precipitation patterns in flood season over China associated with the EI Nino/Southern Oscillation (ENSO) are investigated, especially in the eastern China, using the rather long period rainfall data in this century. The results show that there were remarkable differences between the precipitation patterns in flood seasons of ENSO warm phase (EI Nino year) and cold phase (La Nina year), as well as between the patterns in EI Nino years and their following you. The most parts of China received below normal rainfall in flood season of the onset years of EI Nino events, but the coastal area of Southeast China received above normal amounts. Comparatively, the most parts of China received above normal rainfall in flood season of the following years of EI Nino events, but the eastern part of the reaches among the Huanghe (Yellow) River, the Huaihe River and the Haihe River, and the Northeast China received less. During ENSO cold phase, the reaches of the Changjiang (Yangtze) River and the North China received more amounts than normal lainfall in flood season of the onset years of in Nina events, and the other regions of China received less. In the following years of La Nina events, the coastal area of the Southeast China, the most part of the Northeast China and the regions between the Huanghe River and the Huaihe River received more precipitation during flood seasons, but the other parts received below normal precipitation. 展开更多
关键词 ENSO China precipitation in FLOOD season TELECONNECTION
下载PDF
Seasonal prediction skills of FIO-ESM for North Pacific sea surface temperature and precipitation
20
作者 Yiding Zhao Xunqiang Yin +1 位作者 Yajuan Song Fangli Qiao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第1期5-12,共8页
The seasonal prediction of sea surface temperature(SST) and precipitation in the North Pacific based on the hindcast results of The First Institute of Oceanography Earth System Model(FIO-ESM) is assessed in this study... The seasonal prediction of sea surface temperature(SST) and precipitation in the North Pacific based on the hindcast results of The First Institute of Oceanography Earth System Model(FIO-ESM) is assessed in this study.The Ensemble Adjusted Kalman Filter assimilation scheme is used to generate initial conditions, which are shown to be reliable by comparison with the observations. Based on this comparison, we analyze the FIO-ESM 6-month hindcast results starting from each month of 1993–2013. The model exhibits high SST prediction skills over most of the North Pacific for two seasons in advance. Furthermore, it remains skillful at long lead times for midlatitudes. The reliable prediction of SST can transfer fairly well to precipitation prediction via air-sea interactions.The average skill of the North Pacific variability(NPV) index from 1 to 6 months lead is as high as 0.72(0.55) when El Ni?o-Southern Oscillation and NPV are in phase(out of phase) at initial conditions. The prediction skill of the NPV index of FIO-ESM is improved by 11.6%(23.6%) over the Climate Forecast System, Version 2. For seasonal dependence, the skill of FIO-ESM is higher than the skill of persistence prediction in the later period of prediction. 展开更多
关键词 seasonAL prediction NORTH PACIFIC sea surface temperature precipitation FIO-ESM climate model
下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部