期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Observed Vertical Structure of Precipitation over the Southeastern Tibetan Plateau in Summer 2021
1
作者 Gaili WANG Renran ZHOU +1 位作者 Jingyi ZHANG Ran LI 《Journal of Meteorological Research》 SCIE CSCD 2023年第1期90-106,共17页
Mêdog County,with its mountains and valleys,is located in the southeastern Tibetan Plateau(TP)and at the lower reaches of the Yarlung Zangbo River.This area has the highest annual rainfall amount over the TP,and ... Mêdog County,with its mountains and valleys,is located in the southeastern Tibetan Plateau(TP)and at the lower reaches of the Yarlung Zangbo River.This area has the highest annual rainfall amount over the TP,and in situ measurements are very scarce due to frequent debris flows and transportation difficulties.A monitoring campaign focused on cloud and precipitation observations was established in Mêdog in 2019 as a part of the Second Tibetan Plateau Scientific Expedition and Research Program.This paper evaluates the accuracy of micro rain radar(MRR)measurements and investigates the variations in precipitation vertical structure in Mêdog using observations collected from the MRR,disdrometer,and rain gauges in summer 2021.The measurements from the three instruments show a strong consistency,with correlation coefficients exceeding 0.93.Although the profiles of integral rain parameters for different rain rate categories in Mêdog are similar to those in other regions,the vertical evolution of raindrop size distributions shows significant differences.For lightest rain,the evaporation of small raindrops and breakup of large raindrops are clear during their descent.For the rainfall rate category of 0.2–2.0 mm h−1(2.0–20.0 mm h−1),concentrations of small and medium(large)drops show almost uniform vertical structures,while the large(medium)drop number displays a positive(negative)gradient.A disturbance at height of 1.5–2.0 km above ground level(AGL)is observed in the heavy rainfall due to strong updrafts.In general,the MRR measurements in Mêdog are robust.The raindrop breakup process is more apparent in Mêdog than in other regions,resulting in high concentration of sizelimited raindrops.In addition,it is found that the interaction between steep terrain and Mêdog convective rain causes the strong updrafts between 1.5 and 2.0 km AGL. 展开更多
关键词 precipitation vertical structure Tibetan Plateau raindrop size distribution(DSD) micro rain radar strong updraft
原文传递
Structural Characteristics of Atmospheric Temperature and Humidity inside Clouds of Convective and Stratiform Precipitation in the Rainy Season over East Asia 被引量:6
2
作者 Rui WANG Yunfei FU 《Journal of Meteorological Research》 SCIE CSCD 2017年第5期890-905,共16页
In this study, a merged dataset constructed from Tropical Rainfall Measuring Mission precipitation radar rain products and Integrated Global Radiosonde Archive data is used to investigate the thermal structural charac... In this study, a merged dataset constructed from Tropical Rainfall Measuring Mission precipitation radar rain products and Integrated Global Radiosonde Archive data is used to investigate the thermal structural characteristics of convective and stratiform precipitation in the rainy season (May-August) of 1998-2012 over East Asia. The res- ults show that the storm tops for convective precipitation are higher than those for stratiform precipitation, because of the more unstable atmospheric motions for convective precipitation. Moreover, the storm tops are higher at 1200 UTC than at 0000 UTC over land regions for both convective and stratiform precipitation, and vice versa for ocean region. Additionally, temperature anomaly patterns inside convective and stratiform precipitating clouds show a neg- ative anomaly of about 0-2 K, which results in cooling effects in the lower troposphere. This cooling is more obvi- ous at 1200 UTC for stratiform precipitation. The positive anomaly that appears in the middle troposphere is more than 2 K, with the strongest warming at 300 hPa. Relative humidity anomaly patterns show a positive anomaly in the middle troposphere (700-500 hPa) prior to the occurrence of the two types of precipitation, and the increase in mois- ture is evident for stratiform precipitation. 展开更多
关键词 vertical structure of precipitation atmospheric stability temperature anomaly relative humidity anomaly
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部