In this paper, the factors of affecting surface roughness and profiles accuracy of the machined larege depth diamter ratio aspheric surfaces in ultra-precision grinding process are analyzed theoretically. An ultra-pre...In this paper, the factors of affecting surface roughness and profiles accuracy of the machined larege depth diamter ratio aspheric surfaces in ultra-precision grinding process are analyzed theoretically. An ultra-precision aspheric grinding system is then designed and manufactured. Aerostatic form is adopted to build the spindle of the workpiece, transverse guideway, longitudinal guideway and the spindle of the grinder in this system. The following specification is achieved, such as the turning accuracy of the spindle of the workpiece is 0.05 μm, radial rigidity of the spindle is GE 220N/μm, axial rigidity is GE 160 N/μm, radial rigidity of the guideway is GE 200N/μm, the highest rotational speed of the grinder is 80 000 rev/min and its turning accuracy is 0.1 μm, the resolution of linear displacement of the transverse and longitudinal guideway is 4.9 nm. Adjusting range of this adjusting mechanism is 2 mm in the Y direction, the adjusting accuracy of the precise adjusting mechanism is 0.1 μm. Micro displacement measuring system of this ultra-precision aspheric grinding adopts two-backfeed strategy, and angle displacement back-feed is realized by photoelectric encoder, it’s resolution is 655 360 pulse/rev. after 4 frequency multiplication, it’s angle displacement resolution is achieved 2 621 440 pulse/rev. Straight-line displacement is monitored by single frequency laser interferometer (DLSTAX LTM-20B, made in Japan). This CNC system adopts inimitable bi-arc step length flex CN interpolation algorithm, it’s CN system resolution is 5 nm.So this aspheric grinding system ensures profile accuracy of the machined part. The resolution of this interferometer is 5 nm. Finally, lots of ultra-precision grinding experiments are carried out on this grinding system. Some optical aspheric parts, with profiles accuracy of 0.3 μm, surface roughness less than 0.01 μm, are obtained.展开更多
Large aspheric mirrors are needed for the remote sensing and ground based telescope optical systems,these mirrors are made of hard and brittle materials which require ultra-precision grinding process to guarantee the ...Large aspheric mirrors are needed for the remote sensing and ground based telescope optical systems,these mirrors are made of hard and brittle materials which require ultra-precision grinding process to guarantee the high profile accuracy and machining efficiency. The ultra-precision aspheric CNC grinding machine( UAG900) is presented by this paper,as well as its grinding capability. The hydrostatic bearings of high accuracy and stiffness are adopted by the linear and rotary motions to guarantee the mirror accuracy,material removal rate and subsurface damage. Disk type grinding wheel with arc edge is used. The material removal rate can be up to 360 mm3/ min to guarantee the machining efficiency during rough grinding using D180 diamond grinding wheel while the fine grinding is performed using D15 grinding wheel. It indicates that the grinding wheel radius measuring error is proportional to the profile error induced by the grinding path. The grinding step size is better to be 0. 01 mm for the reduction of the grinding movement accelerations and program length. The grinding path is planned and expressed based on the grinding mode according to the mirror shape. One540 mm×450 mm× 100 mm zerodur mirror is ground and re-ground using the measuring data acquired by the Leitz CMM. The final surface accuracy of P-V value is less than 5 μm after compensation grinding.展开更多
Reaction bonded SiC(RBSiC) is attractive for optical application because of its favorable properties and low fabrication cost. However, the difficultness and cost involved in RBSiC grinding limit its application. Th...Reaction bonded SiC(RBSiC) is attractive for optical application because of its favorable properties and low fabrication cost. However, the difficultness and cost involved in RBSiC grinding limit its application. The investigation on high efficient and low-cost machining with good grinding quality is desired. Generally, high efficient machining for RBSiC is realized by using coarse grain size grinding wheels, but serious grinding damage is inevitable. In this paper, monolayer nickel electroplated coarse grain size diamond grinding wheels with grain sizes of 46 μm, 91 μm, and 151 μm were applied to the grinding of RBSiC. An electrolytic in-process dressing(ELID) assisted conditioning technique was first developed by using cup shape copper bonded conditioning wheels with grain sizes of 15 μm and 91 μm to generate the conditioned coarse grain size wheels with minimized wheel run-out error within 2 μm, constant wheel peripheral envelop as well as top-flattened diamond grains. Then, the grinding experiments on RBSiC were carried out to investigate the grinding performance and material removal mechanism. The experimental results indicate that the developed conditioning technique is applicable and feasible to condition the coarse grain size diamond wheels under optimal conditioning parameters, and the material removal mechanism involved in RBSiC grinding is the combination of brittle fracture and ductile deformation to generate smooth ground surface. This research is significant for the high efficient and low-cost precision grinding of RBSiC with good ground surface quality.展开更多
In order to minimize vibration and improve rotary precision of spindle, we apply active vibration control technique to ultra-precision turning machine based on the analysis of vibration characteristic of aerostatic be...In order to minimize vibration and improve rotary precision of spindle, we apply active vibration control technique to ultra-precision turning machine based on the analysis of vibration characteristic of aerostatic bearing spindle. Using aerostatic bearing itself as actuator, the vibration of spindle is controlled by adjusting admission pressure respectively and by changing pressure distribution in the bearing. The experiments and simulations prove that this method can minimize the vibration of spindle effectively.展开更多
This paper proposes an experimental approach for monitoring and inspection of the formation accuracy in ultra-precision grinding (UPG) with respect to the chatter vibration. Two factors related to the grinding progr...This paper proposes an experimental approach for monitoring and inspection of the formation accuracy in ultra-precision grinding (UPG) with respect to the chatter vibration. Two factors related to the grinding progress, the grinding speed of grinding wheel and spindle, and the oil pressure of the hydrostatic bearing are taken into account to determining the accuracy. In the meantime, a mathematical model of the radius deviation caused by the micro vibration is also established and applied in the experiments. The results show that the accuracy is sensitive to the vibration and the forming accuracy is much improved with proper processing parameters. It is found that the accuracy of aspheric surface can be less than 4 μm when the grinding speed is 1400r/min and the wheel speed is 100 r/min with the oil pressure being 1.1 MPa.展开更多
As for ultra-precision grinding of difficult-to-process thin-walled complex components with ball-end grinding wheels,interference is easy to occur.According to screw theory and grinding kinematics,a mathematical model...As for ultra-precision grinding of difficult-to-process thin-walled complex components with ball-end grinding wheels,interference is easy to occur.According to screw theory and grinding kinematics,a mathematical model is established to investigate the interference and grinding characteristics of the ball-end wheel.The relationship between grinding wheel inclination angle,C axis rotation angle,grinding position angle and grinding wheel wear are analyzed.As the grinding wheel inclination angle increases,the C axis rotatable range decreases and the grinding position angle increases.The grinding position angle and wheel radius wear show a negative correlation with the C axis rotation angle.Therefore,a trajectory planning criteria for increasing grinding speed as much as possible under the premise of avoiding interference is proposed to design the grinding trajectory.Then grinding point distribution on the ball-end wheel is calculated,and the grinding characteristics,grinding speed and maximum undeformed chip thickness,are investigated.Finally,a complex structural component can be ground without interference,and surface roughness and profile accuracy are improved to 40.2 nm and 0.399 lm,compared with 556 nm and 3.427 lm before ultra-precision grinding.The mathematical model can provide theoretical guidance for the analysis of interference and grinding characteristics in complex components grinding to improve its grinding quality.展开更多
Precision is one of the most important aspects of manufacturing.High precision creates high quality,high performance,exchangeability,reliability,and added value for industrial products.Over the past decades,remarkable...Precision is one of the most important aspects of manufacturing.High precision creates high quality,high performance,exchangeability,reliability,and added value for industrial products.Over the past decades,remarkable advances have been achieved in the area of high-precision manufacturing technologies,where the form accuracy approaches the nanometer level and surface roughness the atomic level.These extremely high precision manufacturing technologies enable the development of high-performance optical elements,semiconductor substrates,biomedical parts,and so on,thereby enhancing the ability of human beings to explore the macroand microscopic mysteries and potentialities of the natural world.In this paper,state-of-the-art high-precision material removal manufacturing technologies,especially ultraprecision cutting,grinding,deterministic form correction polishing,and supersmooth polishing,are reviewed and compared with insights into their principles,methodologies,and applications.The key issues in extreme precision manufacturing that should be considered for future R&D are discussed.展开更多
Be directed against the development trend of modern CNC grinding machine towards high precision and high efficiency, some general weaknesses of existing camber grinding machine are analyzed in detail. In order to deve...Be directed against the development trend of modern CNC grinding machine towards high precision and high efficiency, some general weaknesses of existing camber grinding machine are analyzed in detail. In order to develop new type CNC camber grinding machine that can grind complex die, and genuinely achieved accurate feed and high efficient grinding, a new type camber grinding machine is put forward, called non-transmission virtual-shaft CNC camber grinding machine. Its feed system is a parallel mechanism that is directly driven by linear step motor. Therefore, traditional transmission types, such as the ball lead-screw mechanisms, the gears, the hydraulic transmission system, etc. are cancelled, and the feed system of new type CNC camber grinding machine can truly possess non-creep, good accuracy retentiveness a wide range of feed-speed change, high kinematical accuracy and positioning precision, etc. In order to realize that the cutting motion is provided with high grinding speed, step-less speed variation, high rotational accuracy, good dynamic performance, and non-transmission, the driving technology of hollow rotor motor is applied to drive the spindle of new type grinding machine,thus leading to the elimination of the transmission parts of cutting motion. The principle structure model of new type camber grinding machine is advanced. The selection, control gist and driving circuit line of the linear step motor are expounded. The main technology characteristics and application advantages of non-transmission virtual-shaft CNC camber grinding machine are introduced.展开更多
The reasons for bringing surface accuracy error in ultra-precision grinding ceramic ball joint were analyzed,and the influences wheel position error and shaft run-out error on the ball joint surface accuracy were disc...The reasons for bringing surface accuracy error in ultra-precision grinding ceramic ball joint were analyzed,and the influences wheel position error and shaft run-out error on the ball joint surface accuracy were discussed.Through establishing three-dimensional grinding model,the mathematical relationship between the position error and surface accuracy was derived,and the distance from any point on spherical surface to the ideal center was calculated when position error existed,and a precise surface shape was got,and theoretical support was provided to improve the surface accuracy during the grinding process.Using self-developed ultraprecision grinding machine to do the ceramic ball grinding experiment,the surface accuracy PV value of ceramic spherical joint is 4.8μm.展开更多
According to the critical size ratio for the characteristic particle size to film thickness between grinding wheel and work, the machining mechanisms in abrasive jet precision finishing with grinding wheel as restrain...According to the critical size ratio for the characteristic particle size to film thickness between grinding wheel and work, the machining mechanisms in abrasive jet precision finishing with grinding wheel as restraint can be categorized into four states, namely, two-body lapping, three-body polishing, abrasive jet machining and fluid hydrodynamic shear stress machining. The critical transition condition of two-body lapping to three-body polishing was analyzed. The single abrasive material removal models of two-body lapping, three-body polishing, abrasive jet finishing and fluid hydrodynamic shear stress machining were proposed. Experiments were performed in the refited plane grinding machine for theoretical modes verification. It was found that experimental results agreed with academic modes and the modes validity was verified.展开更多
As for the ultra-precision grinding of the hemispherical fused silica resonator,due to the hard and brittle nature of fused silica,subsurface damage(SSD)is easily generated,which enormously influences the performance ...As for the ultra-precision grinding of the hemispherical fused silica resonator,due to the hard and brittle nature of fused silica,subsurface damage(SSD)is easily generated,which enormously influences the performance of such components.Hence,ultra-precision grinding experiments are carried out to investigate the surface/subsurface quality of the hemispherical resonator machined by the small ball-end fine diamond grinding wheel.The influence of grinding parameters on the surface roughness(SR)and SSD depth of fused silica samples is then analyzed.The experimental results indicate that the SR and SSD depth decreased with the increase of grinding speed and the decrease of feed rate and grinding depth.In addition,based on the material strain rate and the maximum undeformed chip thickness,the effect of grinding parameters on the subsurface damage mechanism of fused silica samples is analyzed.Furthermore,a multi-step ultra-precision grinding technique of the hemispherical resonator is proposed based on the interaction influence between grinding depth and feed rate.Finally,the hemispherical resonator is processed by the proposed grinding technique,and the SR is improved from 454.328 nm to 110.449 nm while the SSD depth is reduced by 94%from 40μm to 2.379μm.The multi-step grinding technique proposed in this paper can guide the fabrication of the hemispherical resonator.展开更多
文摘In this paper, the factors of affecting surface roughness and profiles accuracy of the machined larege depth diamter ratio aspheric surfaces in ultra-precision grinding process are analyzed theoretically. An ultra-precision aspheric grinding system is then designed and manufactured. Aerostatic form is adopted to build the spindle of the workpiece, transverse guideway, longitudinal guideway and the spindle of the grinder in this system. The following specification is achieved, such as the turning accuracy of the spindle of the workpiece is 0.05 μm, radial rigidity of the spindle is GE 220N/μm, axial rigidity is GE 160 N/μm, radial rigidity of the guideway is GE 200N/μm, the highest rotational speed of the grinder is 80 000 rev/min and its turning accuracy is 0.1 μm, the resolution of linear displacement of the transverse and longitudinal guideway is 4.9 nm. Adjusting range of this adjusting mechanism is 2 mm in the Y direction, the adjusting accuracy of the precise adjusting mechanism is 0.1 μm. Micro displacement measuring system of this ultra-precision aspheric grinding adopts two-backfeed strategy, and angle displacement back-feed is realized by photoelectric encoder, it’s resolution is 655 360 pulse/rev. after 4 frequency multiplication, it’s angle displacement resolution is achieved 2 621 440 pulse/rev. Straight-line displacement is monitored by single frequency laser interferometer (DLSTAX LTM-20B, made in Japan). This CNC system adopts inimitable bi-arc step length flex CN interpolation algorithm, it’s CN system resolution is 5 nm.So this aspheric grinding system ensures profile accuracy of the machined part. The resolution of this interferometer is 5 nm. Finally, lots of ultra-precision grinding experiments are carried out on this grinding system. Some optical aspheric parts, with profiles accuracy of 0.3 μm, surface roughness less than 0.01 μm, are obtained.
基金Sponsored by the National High Technology Research and Development Program(Grant No.2008AA042503)the National Science and Technology Major Project(Grant No.2013ZX04006011-201)
文摘Large aspheric mirrors are needed for the remote sensing and ground based telescope optical systems,these mirrors are made of hard and brittle materials which require ultra-precision grinding process to guarantee the high profile accuracy and machining efficiency. The ultra-precision aspheric CNC grinding machine( UAG900) is presented by this paper,as well as its grinding capability. The hydrostatic bearings of high accuracy and stiffness are adopted by the linear and rotary motions to guarantee the mirror accuracy,material removal rate and subsurface damage. Disk type grinding wheel with arc edge is used. The material removal rate can be up to 360 mm3/ min to guarantee the machining efficiency during rough grinding using D180 diamond grinding wheel while the fine grinding is performed using D15 grinding wheel. It indicates that the grinding wheel radius measuring error is proportional to the profile error induced by the grinding path. The grinding step size is better to be 0. 01 mm for the reduction of the grinding movement accelerations and program length. The grinding path is planned and expressed based on the grinding mode according to the mirror shape. One540 mm×450 mm× 100 mm zerodur mirror is ground and re-ground using the measuring data acquired by the Leitz CMM. The final surface accuracy of P-V value is less than 5 μm after compensation grinding.
基金supported by the Alexander von Humboldt (AvH) Stiftung/Foundation of Germany,National Key Project of China (Grant No. 09ZX04001-151)the "111" Project of China (Grant No. B07018)
文摘Reaction bonded SiC(RBSiC) is attractive for optical application because of its favorable properties and low fabrication cost. However, the difficultness and cost involved in RBSiC grinding limit its application. The investigation on high efficient and low-cost machining with good grinding quality is desired. Generally, high efficient machining for RBSiC is realized by using coarse grain size grinding wheels, but serious grinding damage is inevitable. In this paper, monolayer nickel electroplated coarse grain size diamond grinding wheels with grain sizes of 46 μm, 91 μm, and 151 μm were applied to the grinding of RBSiC. An electrolytic in-process dressing(ELID) assisted conditioning technique was first developed by using cup shape copper bonded conditioning wheels with grain sizes of 15 μm and 91 μm to generate the conditioned coarse grain size wheels with minimized wheel run-out error within 2 μm, constant wheel peripheral envelop as well as top-flattened diamond grains. Then, the grinding experiments on RBSiC were carried out to investigate the grinding performance and material removal mechanism. The experimental results indicate that the developed conditioning technique is applicable and feasible to condition the coarse grain size diamond wheels under optimal conditioning parameters, and the material removal mechanism involved in RBSiC grinding is the combination of brittle fracture and ductile deformation to generate smooth ground surface. This research is significant for the high efficient and low-cost precision grinding of RBSiC with good ground surface quality.
文摘In order to minimize vibration and improve rotary precision of spindle, we apply active vibration control technique to ultra-precision turning machine based on the analysis of vibration characteristic of aerostatic bearing spindle. Using aerostatic bearing itself as actuator, the vibration of spindle is controlled by adjusting admission pressure respectively and by changing pressure distribution in the bearing. The experiments and simulations prove that this method can minimize the vibration of spindle effectively.
文摘This paper proposes an experimental approach for monitoring and inspection of the formation accuracy in ultra-precision grinding (UPG) with respect to the chatter vibration. Two factors related to the grinding progress, the grinding speed of grinding wheel and spindle, and the oil pressure of the hydrostatic bearing are taken into account to determining the accuracy. In the meantime, a mathematical model of the radius deviation caused by the micro vibration is also established and applied in the experiments. The results show that the accuracy is sensitive to the vibration and the forming accuracy is much improved with proper processing parameters. It is found that the accuracy of aspheric surface can be less than 4 μm when the grinding speed is 1400r/min and the wheel speed is 100 r/min with the oil pressure being 1.1 MPa.
基金the National Key Research and Development Program of China(No.2018YFB 1107600)。
文摘As for ultra-precision grinding of difficult-to-process thin-walled complex components with ball-end grinding wheels,interference is easy to occur.According to screw theory and grinding kinematics,a mathematical model is established to investigate the interference and grinding characteristics of the ball-end wheel.The relationship between grinding wheel inclination angle,C axis rotation angle,grinding position angle and grinding wheel wear are analyzed.As the grinding wheel inclination angle increases,the C axis rotatable range decreases and the grinding position angle increases.The grinding position angle and wheel radius wear show a negative correlation with the C axis rotation angle.Therefore,a trajectory planning criteria for increasing grinding speed as much as possible under the premise of avoiding interference is proposed to design the grinding trajectory.Then grinding point distribution on the ball-end wheel is calculated,and the grinding characteristics,grinding speed and maximum undeformed chip thickness,are investigated.Finally,a complex structural component can be ground without interference,and surface roughness and profile accuracy are improved to 40.2 nm and 0.399 lm,compared with 556 nm and 3.427 lm before ultra-precision grinding.The mathematical model can provide theoretical guidance for the analysis of interference and grinding characteristics in complex components grinding to improve its grinding quality.
文摘Precision is one of the most important aspects of manufacturing.High precision creates high quality,high performance,exchangeability,reliability,and added value for industrial products.Over the past decades,remarkable advances have been achieved in the area of high-precision manufacturing technologies,where the form accuracy approaches the nanometer level and surface roughness the atomic level.These extremely high precision manufacturing technologies enable the development of high-performance optical elements,semiconductor substrates,biomedical parts,and so on,thereby enhancing the ability of human beings to explore the macroand microscopic mysteries and potentialities of the natural world.In this paper,state-of-the-art high-precision material removal manufacturing technologies,especially ultraprecision cutting,grinding,deterministic form correction polishing,and supersmooth polishing,are reviewed and compared with insights into their principles,methodologies,and applications.The key issues in extreme precision manufacturing that should be considered for future R&D are discussed.
文摘Be directed against the development trend of modern CNC grinding machine towards high precision and high efficiency, some general weaknesses of existing camber grinding machine are analyzed in detail. In order to develop new type CNC camber grinding machine that can grind complex die, and genuinely achieved accurate feed and high efficient grinding, a new type camber grinding machine is put forward, called non-transmission virtual-shaft CNC camber grinding machine. Its feed system is a parallel mechanism that is directly driven by linear step motor. Therefore, traditional transmission types, such as the ball lead-screw mechanisms, the gears, the hydraulic transmission system, etc. are cancelled, and the feed system of new type CNC camber grinding machine can truly possess non-creep, good accuracy retentiveness a wide range of feed-speed change, high kinematical accuracy and positioning precision, etc. In order to realize that the cutting motion is provided with high grinding speed, step-less speed variation, high rotational accuracy, good dynamic performance, and non-transmission, the driving technology of hollow rotor motor is applied to drive the spindle of new type grinding machine,thus leading to the elimination of the transmission parts of cutting motion. The principle structure model of new type camber grinding machine is advanced. The selection, control gist and driving circuit line of the linear step motor are expounded. The main technology characteristics and application advantages of non-transmission virtual-shaft CNC camber grinding machine are introduced.
基金Sponsored by the National Defense Basic Research Program(Grant No.A0920110016)
文摘The reasons for bringing surface accuracy error in ultra-precision grinding ceramic ball joint were analyzed,and the influences wheel position error and shaft run-out error on the ball joint surface accuracy were discussed.Through establishing three-dimensional grinding model,the mathematical relationship between the position error and surface accuracy was derived,and the distance from any point on spherical surface to the ideal center was calculated when position error existed,and a precise surface shape was got,and theoretical support was provided to improve the surface accuracy during the grinding process.Using self-developed ultraprecision grinding machine to do the ceramic ball grinding experiment,the surface accuracy PV value of ceramic spherical joint is 4.8μm.
基金Sponsored by the National Natural Science Foundation of China (Grant No 50475052)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No 20040145001)
文摘According to the critical size ratio for the characteristic particle size to film thickness between grinding wheel and work, the machining mechanisms in abrasive jet precision finishing with grinding wheel as restraint can be categorized into four states, namely, two-body lapping, three-body polishing, abrasive jet machining and fluid hydrodynamic shear stress machining. The critical transition condition of two-body lapping to three-body polishing was analyzed. The single abrasive material removal models of two-body lapping, three-body polishing, abrasive jet finishing and fluid hydrodynamic shear stress machining were proposed. Experiments were performed in the refited plane grinding machine for theoretical modes verification. It was found that experimental results agreed with academic modes and the modes validity was verified.
基金This work was supported by the National Key Research and Development Program of China(No.2022YFB3403600)the National Natural Science Foundation of China(No.52293403)Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(No.SKLRS202204C).
文摘As for the ultra-precision grinding of the hemispherical fused silica resonator,due to the hard and brittle nature of fused silica,subsurface damage(SSD)is easily generated,which enormously influences the performance of such components.Hence,ultra-precision grinding experiments are carried out to investigate the surface/subsurface quality of the hemispherical resonator machined by the small ball-end fine diamond grinding wheel.The influence of grinding parameters on the surface roughness(SR)and SSD depth of fused silica samples is then analyzed.The experimental results indicate that the SR and SSD depth decreased with the increase of grinding speed and the decrease of feed rate and grinding depth.In addition,based on the material strain rate and the maximum undeformed chip thickness,the effect of grinding parameters on the subsurface damage mechanism of fused silica samples is analyzed.Furthermore,a multi-step ultra-precision grinding technique of the hemispherical resonator is proposed based on the interaction influence between grinding depth and feed rate.Finally,the hemispherical resonator is processed by the proposed grinding technique,and the SR is improved from 454.328 nm to 110.449 nm while the SSD depth is reduced by 94%from 40μm to 2.379μm.The multi-step grinding technique proposed in this paper can guide the fabrication of the hemispherical resonator.