To improve the mechanical properties of Ti6Al4V alloy prepared by selective laser melting(SLM)process,the precision forging was conducted at950°C and different strains and strain rates.The microstructure evolutio...To improve the mechanical properties of Ti6Al4V alloy prepared by selective laser melting(SLM)process,the precision forging was conducted at950°C and different strains and strain rates.The microstructure evolution of as-built samples and forged samples in both horizontal and vertical sections was visualized and analyzed by optical microscope and X-ray diffraction.The microstructure was improved by the precision forging and subsequent water quenching.The porosity in each section was accounted.It can be seen that high strain rate and large deformation result in low porosity,consequently contributing to a better fatigue performance.The micro-hardness was lowered after precision forging and water quenching,while the difference of microhardness between the horizontal and vertical sections became smaller,which illustrated that this process can improve the anisotropy of structural components fabricated by SLM.展开更多
To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the bille...To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the billet geometry on the forming load and the deformation uniformity were analyzed by three-dimensional (3D) finite element method (FEM) under the commercial software DEFORM 3D. The billet geometry was optimized to meet lower forming load and better deformation uniformity requirement. Deformation mechanism was studied through the distribution of flow velocity field and effective strain field. The forging experiments of the helical gear were successfully performed using lead material as a model material under the same process conditions used in the FE simulations. The results show that the forming load decreases as the diameter of relief-hole do increases, but the effect of do on the deformation uniformity is very complicated. The forming load is lower and the deformation is more uniform when do is 10 mm.展开更多
The finite element analysis (FEA) software Ansys was employed to study the stress state of the dies of both plane and non-plane parting face structures with uniform interference and the die of plane parting face str...The finite element analysis (FEA) software Ansys was employed to study the stress state of the dies of both plane and non-plane parting face structures with uniform interference and the die of plane parting face structure with non-uniform interference. Considering the symmetry of the die, a half gear tooth model of the two-ring assembled die with 2.5 GPa inner pressure was constructed. Four paths were defined to investigate the stress state at the bottom comer of the die where stress concentration was serious. FEA results show that the change of parting face from non-plane to plane can greatly reduce the stress at the teeth tips of the die so that the tip fracture is avoided. The interference structure of the die is the most important influencing factor for the stress concentration at the bottom comer. When non-uniform interference is adopted the first principal stress at the comer on the defined paths of the die is much lower than that with uniform interference. The bottom hole radius is another important influencing factor for the comer stress concentration. The first principal stress at the comer of the plane parting face die with non-uniform interference is reduced from 2.3 to 1.9 GPa when the hole radius increases from 12.5 to 16.0 mm. The optimization of the die structure increases the life of the die from 100 to 6 000 hits.展开更多
Forging spur gears are widely used in the driving system of mining machinery and equipment due to their higher strength and dimensional accuracy.For the purpose of precisely calculating the volume of cylindrical spur ...Forging spur gears are widely used in the driving system of mining machinery and equipment due to their higher strength and dimensional accuracy.For the purpose of precisely calculating the volume of cylindrical spur gear billet in cold precision forging,a new theoretical method named average circle method was put forward.With this method,a series of gear billet volumes were calculated.Comparing with the accurate three-dimensional modeling method,the accuracy of average circle method by theoretical calculation was estimated and the maximum relative error of average circle method was less than 1.5%,which was in good agreement with the experimental results.Relative errors of the calculated and the experimental for obtaining the gear billet volumes with reference circle method are larger than those of the average circle method.It shows that average circle method possesses a higher calculation accuracy than reference circle method(traditional method),which should be worth popularizing widely in calculation of spur gear billet volume.展开更多
Half axle gears is produced by precision forging popularly because of the advantages in minimum machining allowances, lower material consumption and good service properties. But the forming quality of precision forgin...Half axle gears is produced by precision forging popularly because of the advantages in minimum machining allowances, lower material consumption and good service properties. But the forming quality of precision forging is difficult to control. Many simulations and analysis of precision forging process were taken by previous researchers. But no concrete method is proposed to evaluate and optimize the forming quality of half axel gears. The primary purpose of this work is improving the forming quality of half axel gears by analyzing and optimizing the affected factors of forming quality. The enclosed-die warm forging process of half axle gears was developed, and a new type of die-set used on double action hydraulic press was brought forward. The main influential factors of precision forming quality were analyzed after the forming process had been simulated by using finite element method(FEM). These factors include die structure, web thickness and web position. A method used to evaluate the forming quality was established, which investigated the maximal forming load, the metal filling rate and the material damage factor. The FEM simulations of half axle gears precision forging were evaluated by this method. The results show that the best forming quality can be achieved when the punches were added with bosses, the web located at the middle plant of the gear, and the web thickness was 30 percent of the inner hole diameter. Verification experiments taking the above optimized parameters were performed on a 7.8 MN double action hydraulic press. The trial products were formed well. And their geometric precision meets the demand. The verification result shows that the optimization of the influential factors, according to the simulations and the evaluation method, can improve the forming quality. The new structure of precision forging die-set and the new evaluation method guarantee a high forming quality ofhalfaxel gears.展开更多
Blade precision forging is a high temperature and large plastic deformation process. Process parameters have a great effect on temperature distribution in billet, so in this paper, by taking a Ti-6Al-4V alloy blade wi...Blade precision forging is a high temperature and large plastic deformation process. Process parameters have a great effect on temperature distribution in billet, so in this paper, by taking a Ti-6Al-4V alloy blade with a tenon as an object, the influence of process parameters on the temperature distribution in precision forging process was investigated using 3D coupled thermo-mechanical FEM (finite element method) code developed by the authors. The results obtained illustrate that: (1) the gradient of temperature distribution increases with increasing the deformation degree; (2) with increasing the initial temperature of the billet, the zones of high temperature become larger, and the gradient of temperature distribution hardly has any increase; (3) friction factors have little effect on the distribution of temperature field; (4) with increasing upper die velocity, temperature of the billet increases while the temperature gradient in billet decreases. The results are helpful to the design and optimization of the process parameters in precision forging process of Ti-alloy blade.展开更多
To reduce the difficulty of material filling into the top region of tooth in hot precision forging of gears using the alternative die designs, relief-cavity designs in different sizes were performed on the top of die ...To reduce the difficulty of material filling into the top region of tooth in hot precision forging of gears using the alternative die designs, relief-cavity designs in different sizes were performed on the top of die tooth. The influences of the conventional process and relief-cavity designs on corner filling, workpiece stress, die stress, forming load and material utilization were examined. Finite element simulation for tooth forming, die stress and forming load using the four designs was performed. The material utilization was further considered, and the optimal design was determined. The tooth form and forming load in forging trials ensured the validity of FE simulation. Tooth accuracy was inspected by video measuring machine(VMM), which shows the hot forged accuracy achieves the level of rough machining of gear teeth. The effects of friction on mode of metal flow and strain distribution were also discussed.展开更多
The precision forging process is simulated by commercial software Deform 3D using a rigid visco-plastic model to predict the status of metal flow and the distribution of equivalent plastic strain, providing guidance f...The precision forging process is simulated by commercial software Deform 3D using a rigid visco-plastic model to predict the status of metal flow and the distribution of equivalent plastic strain, providing guidance for making decision on the optimal choice of process parameters and mould structure. Trial forging was used to verify the effectiveness of FEM simulation results.展开更多
The blade precision forging process is a forming process with high temperature and large plastic deformation. Interaction of deformation and heat conduction leads to large uneven distribution of temperature. The uneve...The blade precision forging process is a forming process with high temperature and large plastic deformation. Interaction of deformation and heat conduction leads to large uneven distribution of temperature. The unevenness of temperature distribution has a great effect on mechanical properties and the microstracture of materials. So it is necessary to consider the influence of temperature on the precision forging process of blades. Taking a blade with a tenon into consideration, a 3D mechanical model in precision forging is built up. The distribution laws of temperature field and the influence of the temperature on the equivalem stress in the process are obtained by using 3-D coupled thermo-mechanical FEM code developed by the authors Theresuits obtained illustrate that the influence of the temperature field on the blade forging process is considerable. The achievements of predicting microstructure and mechanical properties for forged blades is significant.展开更多
Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, auto- mobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and g...Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, auto- mobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and good corrosion resistance. However, during forging processes, underfilling, folding, broken streamline, crack, coarse grain, and other macro- or microdefects are easily generated because of the deformation characteristics of aluminum alloys, including narrow forgeable temperature region, fast heat dissipation to dies, strong adhesion, high strain rate sensitivity, and large flow resistance. Thus, it is seriously restricted for the forged part to obtain precision shape and enhanced property. In this paper, progresses in precision forging technologies of aluminum alloy parts were reviewed. Several advanced precision forging technologies have been developed, including closed die forging, isothermal die forging, local loading forging, metal flow forging with relief cavity, auxiliary force or vibration loading, casting-forging hybrid forming, and stamping-forging hybrid forming. High-precision alumi- num alloy parts can be realized by controlling the forging processes and parameters or combining precision forging technologies with other forming technologies. The development of these technologies is beneficial to promote the application of aluminum alloys in manufacturing of lightweight parts.展开更多
基金Project(50975222)supported by the National Natural Science Foundation of ChinaProject(2014ko8-34)supported by the Industrial Research Project of Shaanxi Province,China
文摘To improve the mechanical properties of Ti6Al4V alloy prepared by selective laser melting(SLM)process,the precision forging was conducted at950°C and different strains and strain rates.The microstructure evolution of as-built samples and forged samples in both horizontal and vertical sections was visualized and analyzed by optical microscope and X-ray diffraction.The microstructure was improved by the precision forging and subsequent water quenching.The porosity in each section was accounted.It can be seen that high strain rate and large deformation result in low porosity,consequently contributing to a better fatigue performance.The micro-hardness was lowered after precision forging and water quenching,while the difference of microhardness between the horizontal and vertical sections became smaller,which illustrated that this process can improve the anisotropy of structural components fabricated by SLM.
基金Project(51105287)supported by the National Natural Science Foundation of China
文摘To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the billet geometry on the forming load and the deformation uniformity were analyzed by three-dimensional (3D) finite element method (FEM) under the commercial software DEFORM 3D. The billet geometry was optimized to meet lower forming load and better deformation uniformity requirement. Deformation mechanism was studied through the distribution of flow velocity field and effective strain field. The forging experiments of the helical gear were successfully performed using lead material as a model material under the same process conditions used in the FE simulations. The results show that the forming load decreases as the diameter of relief-hole do increases, but the effect of do on the deformation uniformity is very complicated. The forming load is lower and the deformation is more uniform when do is 10 mm.
基金Project(2006BAF04B06) supported by the National Key Technology R & D Program of ChinaProject(2005AA101B19) supported by the Key Technology R & D Program of Hubei Province, China
文摘The finite element analysis (FEA) software Ansys was employed to study the stress state of the dies of both plane and non-plane parting face structures with uniform interference and the die of plane parting face structure with non-uniform interference. Considering the symmetry of the die, a half gear tooth model of the two-ring assembled die with 2.5 GPa inner pressure was constructed. Four paths were defined to investigate the stress state at the bottom comer of the die where stress concentration was serious. FEA results show that the change of parting face from non-plane to plane can greatly reduce the stress at the teeth tips of the die so that the tip fracture is avoided. The interference structure of the die is the most important influencing factor for the stress concentration at the bottom comer. When non-uniform interference is adopted the first principal stress at the comer on the defined paths of the die is much lower than that with uniform interference. The bottom hole radius is another important influencing factor for the comer stress concentration. The first principal stress at the comer of the plane parting face die with non-uniform interference is reduced from 2.3 to 1.9 GPa when the hole radius increases from 12.5 to 16.0 mm. The optimization of the die structure increases the life of the die from 100 to 6 000 hits.
文摘Forging spur gears are widely used in the driving system of mining machinery and equipment due to their higher strength and dimensional accuracy.For the purpose of precisely calculating the volume of cylindrical spur gear billet in cold precision forging,a new theoretical method named average circle method was put forward.With this method,a series of gear billet volumes were calculated.Comparing with the accurate three-dimensional modeling method,the accuracy of average circle method by theoretical calculation was estimated and the maximum relative error of average circle method was less than 1.5%,which was in good agreement with the experimental results.Relative errors of the calculated and the experimental for obtaining the gear billet volumes with reference circle method are larger than those of the average circle method.It shows that average circle method possesses a higher calculation accuracy than reference circle method(traditional method),which should be worth popularizing widely in calculation of spur gear billet volume.
基金supported by Chongqing Municipal Science and Technology Committee of China (Grant No. 2005AA3012-4)
文摘Half axle gears is produced by precision forging popularly because of the advantages in minimum machining allowances, lower material consumption and good service properties. But the forming quality of precision forging is difficult to control. Many simulations and analysis of precision forging process were taken by previous researchers. But no concrete method is proposed to evaluate and optimize the forming quality of half axel gears. The primary purpose of this work is improving the forming quality of half axel gears by analyzing and optimizing the affected factors of forming quality. The enclosed-die warm forging process of half axle gears was developed, and a new type of die-set used on double action hydraulic press was brought forward. The main influential factors of precision forming quality were analyzed after the forming process had been simulated by using finite element method(FEM). These factors include die structure, web thickness and web position. A method used to evaluate the forming quality was established, which investigated the maximal forming load, the metal filling rate and the material damage factor. The FEM simulations of half axle gears precision forging were evaluated by this method. The results show that the best forming quality can be achieved when the punches were added with bosses, the web located at the middle plant of the gear, and the web thickness was 30 percent of the inner hole diameter. Verification experiments taking the above optimized parameters were performed on a 7.8 MN double action hydraulic press. The trial products were formed well. And their geometric precision meets the demand. The verification result shows that the optimization of the influential factors, according to the simulations and the evaluation method, can improve the forming quality. The new structure of precision forging die-set and the new evaluation method guarantee a high forming quality ofhalfaxel gears.
基金The authors express their appreciation for the financial support of the Aeronautical Science Foundation of China (No. 02H53061) the National Natural Science Foundation of China for Distinguished Young Scholar (No. 50225518) the Innovation Foundation of Ph.D. Dissertation in NPU of China (No. CX200405).
文摘Blade precision forging is a high temperature and large plastic deformation process. Process parameters have a great effect on temperature distribution in billet, so in this paper, by taking a Ti-6Al-4V alloy blade with a tenon as an object, the influence of process parameters on the temperature distribution in precision forging process was investigated using 3D coupled thermo-mechanical FEM (finite element method) code developed by the authors. The results obtained illustrate that: (1) the gradient of temperature distribution increases with increasing the deformation degree; (2) with increasing the initial temperature of the billet, the zones of high temperature become larger, and the gradient of temperature distribution hardly has any increase; (3) friction factors have little effect on the distribution of temperature field; (4) with increasing upper die velocity, temperature of the billet increases while the temperature gradient in billet decreases. The results are helpful to the design and optimization of the process parameters in precision forging process of Ti-alloy blade.
基金Project(51375042)supported by the National Natural Science Foundation of ChinaProject supported by Beijing Laboratory of Modern Transport Metal Materials and Processing Technology,China
文摘To reduce the difficulty of material filling into the top region of tooth in hot precision forging of gears using the alternative die designs, relief-cavity designs in different sizes were performed on the top of die tooth. The influences of the conventional process and relief-cavity designs on corner filling, workpiece stress, die stress, forming load and material utilization were examined. Finite element simulation for tooth forming, die stress and forming load using the four designs was performed. The material utilization was further considered, and the optimal design was determined. The tooth form and forming load in forging trials ensured the validity of FE simulation. Tooth accuracy was inspected by video measuring machine(VMM), which shows the hot forged accuracy achieves the level of rough machining of gear teeth. The effects of friction on mode of metal flow and strain distribution were also discussed.
文摘The precision forging process is simulated by commercial software Deform 3D using a rigid visco-plastic model to predict the status of metal flow and the distribution of equivalent plastic strain, providing guidance for making decision on the optimal choice of process parameters and mould structure. Trial forging was used to verify the effectiveness of FEM simulation results.
基金supported by the Aeronautical Science Foundation of China(No.02H53061)the National Science Found of China for Distinguished Young Scholar(No.50225518)the Shaan'xi Provincial Natural Science Foundation of China(No.2001CS0401)
文摘The blade precision forging process is a forming process with high temperature and large plastic deformation. Interaction of deformation and heat conduction leads to large uneven distribution of temperature. The unevenness of temperature distribution has a great effect on mechanical properties and the microstracture of materials. So it is necessary to consider the influence of temperature on the precision forging process of blades. Taking a blade with a tenon into consideration, a 3D mechanical model in precision forging is built up. The distribution laws of temperature field and the influence of the temperature on the equivalem stress in the process are obtained by using 3-D coupled thermo-mechanical FEM code developed by the authors Theresuits obtained illustrate that the influence of the temperature field on the blade forging process is considerable. The achievements of predicting microstructure and mechanical properties for forged blades is significant.
基金The authors would like to thank the support from Shenzhen Knowledge Innovation Project (Grant No. 201605313001169) and the National Natural Science Foundation of China (Grant No. 51435007).
文摘Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, auto- mobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and good corrosion resistance. However, during forging processes, underfilling, folding, broken streamline, crack, coarse grain, and other macro- or microdefects are easily generated because of the deformation characteristics of aluminum alloys, including narrow forgeable temperature region, fast heat dissipation to dies, strong adhesion, high strain rate sensitivity, and large flow resistance. Thus, it is seriously restricted for the forged part to obtain precision shape and enhanced property. In this paper, progresses in precision forging technologies of aluminum alloy parts were reviewed. Several advanced precision forging technologies have been developed, including closed die forging, isothermal die forging, local loading forging, metal flow forging with relief cavity, auxiliary force or vibration loading, casting-forging hybrid forming, and stamping-forging hybrid forming. High-precision alumi- num alloy parts can be realized by controlling the forging processes and parameters or combining precision forging technologies with other forming technologies. The development of these technologies is beneficial to promote the application of aluminum alloys in manufacturing of lightweight parts.