Single seed metering devices for Chinese flowering cabbage planting machines have suffered such deficiencies as low efficiency,poor accuracy,and instability.To overcome these limitations,a pneumatic double disc precis...Single seed metering devices for Chinese flowering cabbage planting machines have suffered such deficiencies as low efficiency,poor accuracy,and instability.To overcome these limitations,a pneumatic double disc precision seed metering device was designed.This innovative device can simultaneously plant four rows,considering the specific agricultural requirements and the geometric characteristics for Chinese flowering cabbage seeds.The precise parameters of the key component seed disc were derived through theoretical calculation.In addition,a detailed account was given for the working principle and workflow of the seed metering device.The discrete element method and EDEM software were employed to optimize the seed disc by exploring the effects of seed disc rotational speed and interleaving seed slots on seed viability.Orthogonal rotation experiments were conducted to evaluate the impact of seed disc rotational speed and negative pressure.While rates of qualified seeding,double seeding and missing seeding were adopted as test indicators.Testing results show that,at a seed disc rotational speed of 41.5 r/min and a negative pressure of 3.80 kPa,the average qualified seeding rate is 90.13%,the average missing seeding rate is 3.30%,and the average double seeding rate is 6.02%.These values satisfy the agricultural requirements for planting Chinese flowering cabbage.The findings can also provide valuable insights for the structural optimization and design of precision seed metering devices for Chinese flowering cabbage.展开更多
Vacuum precision seed metering is the key part of vacuum seed planter. Planting performance of planter is affected by vacuum and air flow which are important parameters for choosing fan. Effects of qualification perce...Vacuum precision seed metering is the key part of vacuum seed planter. Planting performance of planter is affected by vacuum and air flow which are important parameters for choosing fan. Effects of qualification percent and miss percent on air chamber vacuum 3, 4, 5 and 6 kPa were studied at different operating speeds. The results showed that operating performance of the seed metering was excellent when air chamber vacuum was 5 and 6 kPa, which air flow was 7.4-8.0 m3·s-1 and 8.0-8.8 m3·s-1 , respectively.展开更多
There are many design parameters in precision planters to be considered such as cell diameter, peripheral speed of roller, number of cells, manner of feeding seeds into cell and travel speed. In precision planters eac...There are many design parameters in precision planters to be considered such as cell diameter, peripheral speed of roller, number of cells, manner of feeding seeds into cell and travel speed. In precision planters each cell must contain only one seed. Therefore, sliding the seed to the cell is important and depends on several parameters such as seed repose angle, seed dimensions and physics of cell. To help the seed to repose in the cell, making a groove on the roller would be very useful. Dimensions of this groove are very important and are considered as basic design parameters. This research was performed to determine some design parameters such as roller speed, travel speed, length and depth of groove for tomato seeds precision planting. In this regard, seeds with a diameter of 4 mm were used. The range of variation was based on calculations obtained. A roller with 42 mm width, 118 mm diameter and 15 cells on the surface was used in the experiment. For each cell, a triangular groove was created on the roller. The groove depth varied from zero at the beginning to the maximum value where the groove connected to the cell. The test unit had a continued and wide belt with 1 l m length. In each replication, planter worked for 20 s to reach a stable state. Thereafter, seeds were allowed to drop on the grease belt. Number of seeds and their spacing were measured on the 4.5 m of the belt. Results showed that the roller speed of 41.5 rpm, the planter travel speed of approximately 1 km/h, groove length of 6-8 mm and groove depth of 1.5 mm can improve planter performance for tomato pelleted seed.展开更多
Aiming to solve the problem of small range of the appropriately sowing seeds existing in a vertical disc seed-metering device,the planter plate series with four sizes were developed according to the variety and size d...Aiming to solve the problem of small range of the appropriately sowing seeds existing in a vertical disc seed-metering device,the planter plate series with four sizes were developed according to the variety and size distribution of all soybeans in China.The structure and working principle of the vertical disc soybean seed-metering device were detailed,and the influence of the diameter of soybean on the working performance of the seed-metering device was analyzed through the software EDEM virtual simulation,so as to achieve the goal of covering the soybean seeds with all sizes by the minimum planter plate series as well as to obtain the most appropriate operating speed of each planter plate by optimization.For the planter plates with the hole diameter of 7,9,12,16 mm,the appropriate size ranges of sowing seeds are 4.5-6.0,6.0-8.0,8.0-10.5,10.5-13.0 mm,respectively,and the appropriate operating speeds are 9,8,7,6 km/h,respectively.The results show that this planter plate series can meet the requirements of seeding with all sizes of soybeans at the range of the most appropriate operating speed.The study method can provide a reference for design and optimization of precision planters.展开更多
A ripple surface type pickup finger was designed to improve the performance of pickup finger precision maize seed metering device and to provide a solution for precision maize planter.The main structure and working pr...A ripple surface type pickup finger was designed to improve the performance of pickup finger precision maize seed metering device and to provide a solution for precision maize planter.The main structure and working principle of seed metering device were detailed in this paper.The dimension size distributions of maize seeds in different types were studied,the gestures of seeds clamped by pickup finger were analyzed,and the clamping dynamical model of pickup finger was established by theoretical analysis.To optimize the structural parameters of ripple surface type pickup finger,the discrete element method(DEM)model of pickup finger precision maize seed metering device was established by the discrete element software EDEM.The numerical simulations of orthogonal seeding performance experiments were conducted to analyze the influences of these factors on the quality of seeding.The rotational speed,wavelength of ripple surface and amplitude of ripple surface were selected as the experimental factors.The average seeding qualified index and the average seeding coefficient of variation on four different types of maize seeds were chosen for evaluating the seeding performance.The results showed that,the average seeding qualified index was 93.35%and the average seeding coefficient of variation was 11.23%under conditions of the 25 r/min rotational speed,8 mm wavelength of ripple surface and 2 mm amplitude of ripple surface.Under the same condition,the bench test was done which showed that the results of test and simulation were consistent.The maximum error of qualified index was 1.95%and the qualified index of improved seed metering device exceeded the original one by 12.34%.The working performance can meet the requirements of precision maize seeding.展开更多
A secondary seeding precision double-seed peanut hole seeding seed metering device was designed to improve the performance of the peanut planting equipment and provide a solution for problems on the high seed charge t...A secondary seeding precision double-seed peanut hole seeding seed metering device was designed to improve the performance of the peanut planting equipment and provide a solution for problems on the high seed charge that can cause poor cavitation and uniformity easily.The main structure and operation parameters in terms of groove length,seed charge height,seed-bed belt speed,and rotation speed of the seed metering wheel were determined through theoretical analysis.Single-factor and orthogonal tests were carried out through the JPS-12 seed metering device test bench,and the peanut variety Jinonghua-3 was selected as the test object.The single hole double-seed rate,qualified rate,the variation coefficient of hole spacing,and hole rate were chosen for evaluating the working performance.The results of the single-factor test showed that the seed metering performance is mainly affected by the groove length,the speed of the seed-bed belt and the rotation speed of the seed metering wheel,and the influence of the cavitation rate is minimal.The optimal seeding height is determined to be 40 mm.The results of the orthogonal test showed that the groove length was 27.3 mm,the seed-bed belt speed was 1.51 km/h,and the rotation speed of the seed metering wheel was 14.11 r/min.What’s more,a regression model based on the orthogonal test results was established,the qualified rate of the number of holes obtained after optimizing the model was 98.84%,the variation coefficient of hole spacing was 9.74%,and the hole rate was 1.40%.Notably,the working performances of the device can meet the requirement of precision seeding.展开更多
In order to solve the problems which are widespread in potato seeding planter, such as lower operating efficiency, unideal performance index, higher replay rate and leakage rate and uneven spacing sowing in seeding op...In order to solve the problems which are widespread in potato seeding planter, such as lower operating efficiency, unideal performance index, higher replay rate and leakage rate and uneven spacing sowing in seeding operating, a trailed potato fertilization seeder was designed. The key components of the special structure had been got through the description of the structure and working principle of the whole machine. A crossing seed-taken technology along with the vibration component was adopted to achieve precision seeding. The results showed in the feld test of the machine: all the performance indexes of the machine met the agronomic requirement of potato planting; the multiple and missing index were low; it completed the ditching, fertilizing, seeding as well as ridging in one planting process; its operation effciency was high and the stability was good. This design of the trailed potato fertilization seeder provided a reference for the development of large traction-type potato seeding machine.展开更多
基金supported by Collaborative Innovation Center for Shandong’s Main Crop Production Equipment and Mechanization,Qingdao Shandong 266109,China。
文摘Single seed metering devices for Chinese flowering cabbage planting machines have suffered such deficiencies as low efficiency,poor accuracy,and instability.To overcome these limitations,a pneumatic double disc precision seed metering device was designed.This innovative device can simultaneously plant four rows,considering the specific agricultural requirements and the geometric characteristics for Chinese flowering cabbage seeds.The precise parameters of the key component seed disc were derived through theoretical calculation.In addition,a detailed account was given for the working principle and workflow of the seed metering device.The discrete element method and EDEM software were employed to optimize the seed disc by exploring the effects of seed disc rotational speed and interleaving seed slots on seed viability.Orthogonal rotation experiments were conducted to evaluate the impact of seed disc rotational speed and negative pressure.While rates of qualified seeding,double seeding and missing seeding were adopted as test indicators.Testing results show that,at a seed disc rotational speed of 41.5 r/min and a negative pressure of 3.80 kPa,the average qualified seeding rate is 90.13%,the average missing seeding rate is 3.30%,and the average double seeding rate is 6.02%.These values satisfy the agricultural requirements for planting Chinese flowering cabbage.The findings can also provide valuable insights for the structural optimization and design of precision seed metering devices for Chinese flowering cabbage.
基金Supported by the Youth Science Foundation of Heilongjiang(QC2010119,QC2010028)the Science and Technology Innovation Person with Ability Study Special Foundation Project of Harbin(2011RFQXN054)+1 种基金the Graduate Student Innovative Scientific Research Project of Heilongjiang(YJSCX2011-064JHL)Division of Soybean Machinery,CARS(nycytx-004)
文摘Vacuum precision seed metering is the key part of vacuum seed planter. Planting performance of planter is affected by vacuum and air flow which are important parameters for choosing fan. Effects of qualification percent and miss percent on air chamber vacuum 3, 4, 5 and 6 kPa were studied at different operating speeds. The results showed that operating performance of the seed metering was excellent when air chamber vacuum was 5 and 6 kPa, which air flow was 7.4-8.0 m3·s-1 and 8.0-8.8 m3·s-1 , respectively.
文摘There are many design parameters in precision planters to be considered such as cell diameter, peripheral speed of roller, number of cells, manner of feeding seeds into cell and travel speed. In precision planters each cell must contain only one seed. Therefore, sliding the seed to the cell is important and depends on several parameters such as seed repose angle, seed dimensions and physics of cell. To help the seed to repose in the cell, making a groove on the roller would be very useful. Dimensions of this groove are very important and are considered as basic design parameters. This research was performed to determine some design parameters such as roller speed, travel speed, length and depth of groove for tomato seeds precision planting. In this regard, seeds with a diameter of 4 mm were used. The range of variation was based on calculations obtained. A roller with 42 mm width, 118 mm diameter and 15 cells on the surface was used in the experiment. For each cell, a triangular groove was created on the roller. The groove depth varied from zero at the beginning to the maximum value where the groove connected to the cell. The test unit had a continued and wide belt with 1 l m length. In each replication, planter worked for 20 s to reach a stable state. Thereafter, seeds were allowed to drop on the grease belt. Number of seeds and their spacing were measured on the 4.5 m of the belt. Results showed that the roller speed of 41.5 rpm, the planter travel speed of approximately 1 km/h, groove length of 6-8 mm and groove depth of 1.5 mm can improve planter performance for tomato pelleted seed.
基金the financial support from National Natural Science Foundation of China(51275086).
文摘Aiming to solve the problem of small range of the appropriately sowing seeds existing in a vertical disc seed-metering device,the planter plate series with four sizes were developed according to the variety and size distribution of all soybeans in China.The structure and working principle of the vertical disc soybean seed-metering device were detailed,and the influence of the diameter of soybean on the working performance of the seed-metering device was analyzed through the software EDEM virtual simulation,so as to achieve the goal of covering the soybean seeds with all sizes by the minimum planter plate series as well as to obtain the most appropriate operating speed of each planter plate by optimization.For the planter plates with the hole diameter of 7,9,12,16 mm,the appropriate size ranges of sowing seeds are 4.5-6.0,6.0-8.0,8.0-10.5,10.5-13.0 mm,respectively,and the appropriate operating speeds are 9,8,7,6 km/h,respectively.The results show that this planter plate series can meet the requirements of seeding with all sizes of soybeans at the range of the most appropriate operating speed.The study method can provide a reference for design and optimization of precision planters.
基金the National Science and Technology Support Plan Project(2014BAD06B04).
文摘A ripple surface type pickup finger was designed to improve the performance of pickup finger precision maize seed metering device and to provide a solution for precision maize planter.The main structure and working principle of seed metering device were detailed in this paper.The dimension size distributions of maize seeds in different types were studied,the gestures of seeds clamped by pickup finger were analyzed,and the clamping dynamical model of pickup finger was established by theoretical analysis.To optimize the structural parameters of ripple surface type pickup finger,the discrete element method(DEM)model of pickup finger precision maize seed metering device was established by the discrete element software EDEM.The numerical simulations of orthogonal seeding performance experiments were conducted to analyze the influences of these factors on the quality of seeding.The rotational speed,wavelength of ripple surface and amplitude of ripple surface were selected as the experimental factors.The average seeding qualified index and the average seeding coefficient of variation on four different types of maize seeds were chosen for evaluating the seeding performance.The results showed that,the average seeding qualified index was 93.35%and the average seeding coefficient of variation was 11.23%under conditions of the 25 r/min rotational speed,8 mm wavelength of ripple surface and 2 mm amplitude of ripple surface.Under the same condition,the bench test was done which showed that the results of test and simulation were consistent.The maximum error of qualified index was 1.95%and the qualified index of improved seed metering device exceeded the original one by 12.34%.The working performance can meet the requirements of precision maize seeding.
基金This work was financially supported by the Modern Agricultural Industrial Technology System Oil Industry Innovation Team Building Project of Hebei Province(Grant No.HBCT2018090206)the Hebei Province Youth Top Talent Funding Project.
文摘A secondary seeding precision double-seed peanut hole seeding seed metering device was designed to improve the performance of the peanut planting equipment and provide a solution for problems on the high seed charge that can cause poor cavitation and uniformity easily.The main structure and operation parameters in terms of groove length,seed charge height,seed-bed belt speed,and rotation speed of the seed metering wheel were determined through theoretical analysis.Single-factor and orthogonal tests were carried out through the JPS-12 seed metering device test bench,and the peanut variety Jinonghua-3 was selected as the test object.The single hole double-seed rate,qualified rate,the variation coefficient of hole spacing,and hole rate were chosen for evaluating the working performance.The results of the single-factor test showed that the seed metering performance is mainly affected by the groove length,the speed of the seed-bed belt and the rotation speed of the seed metering wheel,and the influence of the cavitation rate is minimal.The optimal seeding height is determined to be 40 mm.The results of the orthogonal test showed that the groove length was 27.3 mm,the seed-bed belt speed was 1.51 km/h,and the rotation speed of the seed metering wheel was 14.11 r/min.What’s more,a regression model based on the orthogonal test results was established,the qualified rate of the number of holes obtained after optimizing the model was 98.84%,the variation coefficient of hole spacing was 9.74%,and the hole rate was 1.40%.Notably,the working performances of the device can meet the requirement of precision seeding.
基金Supported by Funding(2016YFD0701600)from Research and Development of Potato Harvesting Technology and EquipmentSpecial Funds for Construction of Modern Agricultural Technology System(CARS-10-P22)Study on Key Technical Equipment for Scale of Potato Planting(GA15B401)
文摘In order to solve the problems which are widespread in potato seeding planter, such as lower operating efficiency, unideal performance index, higher replay rate and leakage rate and uneven spacing sowing in seeding operating, a trailed potato fertilization seeder was designed. The key components of the special structure had been got through the description of the structure and working principle of the whole machine. A crossing seed-taken technology along with the vibration component was adopted to achieve precision seeding. The results showed in the feld test of the machine: all the performance indexes of the machine met the agronomic requirement of potato planting; the multiple and missing index were low; it completed the ditching, fertilizing, seeding as well as ridging in one planting process; its operation effciency was high and the stability was good. This design of the trailed potato fertilization seeder provided a reference for the development of large traction-type potato seeding machine.