期刊文献+
共找到366篇文章
< 1 2 19 >
每页显示 20 50 100
电力系统全纯嵌入潮流的并行计算
1
作者 李雪 高翔 +2 位作者 姜涛 王长江 李国庆 《电工技术学报》 EI CSCD 北大核心 2024年第18期5839-5854,共16页
潮流计算是电力系统规划和运行的基础,全纯嵌入潮流计算方法(HELM)因无需初值且具有全局收敛性,因而在电力系统潮流计算中受到极大关注。然而,采用HELM求解大规模电力系统潮流时,高维幂级数系数线性方程组求解和节点电压的幂级数有理的... 潮流计算是电力系统规划和运行的基础,全纯嵌入潮流计算方法(HELM)因无需初值且具有全局收敛性,因而在电力系统潮流计算中受到极大关注。然而,采用HELM求解大规模电力系统潮流时,高维幂级数系数线性方程组求解和节点电压的幂级数有理的逼近计算量大、耗时久,是制约HELM计算效率提升的关键。为此,该文提出一种基于稳定双正交共轭梯度(BICGSTAB)和Aitken差分的电力系统全纯嵌入潮流并行计算方法,该方法首先采用近似逆预处理的BICGSTAB法并行迭代求解HELM的高维幂级数系数线性方程组,以快速计算节点电压的各阶幂级数系数;其次,借助Aitken差分法实现所有节点电压幂级数有理逼近值的并行计算;然后,基于CPU-GPU异构平台设计所提算法的并行流程,以实现大规模电力系统潮流的快速求解;最后,通过节点在1 354~13 802的不同规模测试系统对所提方法进行分析、验证。结果表明,所提电力系统潮流全纯嵌入并行计算方法可实现电力系统潮流的准确、快速求解。 展开更多
关键词 全纯嵌入法 潮流计算 Aitken差分法 CPU-GPU异构运算平台 预处理器
下载PDF
面向GPU架构的CCFD-KSSolver组件设计和实现
2
作者 张浩源 马文鹏 +2 位作者 袁武 张鉴 陆忠华 《数据与计算发展前沿》 CSCD 2024年第1期68-78,共11页
【应用背景】在如计算流体力学和材料科学等高性能应用领域中,大型稀疏线性方程的求解直接影响高性能应用的效率与精度。异构众核已成为现代超算系统体系结构的重要特征和发展趋势。【方法】本文面向CPU+GPU异构超算系统设计并实现了线... 【应用背景】在如计算流体力学和材料科学等高性能应用领域中,大型稀疏线性方程的求解直接影响高性能应用的效率与精度。异构众核已成为现代超算系统体系结构的重要特征和发展趋势。【方法】本文面向CPU+GPU异构超算系统设计并实现了线性解法器组件CCFD-KSSolver。该组件针对异构体系结构特征,实现了针对多物理场块结构矩阵的Krylov子空间解法器和多种典型预处理方法,采用了如计算通信重叠、GPU访存优化、CPUGPU协同计算等优化技术提升CCFD-KSSolver的计算效率。【结果】顶盖驱动流的实验表明,当子区域数目为8时,Block-ISAI相比于CPU和cuSPARSE的子区域求解器分别取得20.09倍和3.34倍的加速比,且具有更好的扩展性;对于百万阶规模的矩阵,应用3种子区域求解器的KSSolver在8个GPU上的并行效率分别为83.8%、55.7%、87.4%。【结论】本文选择具有块结构的经典多物理中的应用对解法器及预处理软构件进行测试,证明其稳定高效性,有力支撑了以流体力学数值模拟为代表的高性能计算与应用在异构系统上的开展。 展开更多
关键词 GPU KSSolver 并行优化 预条件 高性能计算
下载PDF
Searching for the optimal precondition procedure for mesenchymal stem/stromal cell treatment:Facts and perspectives
3
作者 Yu-Dong Zhao Yong-Can Huang Wei-Shi Li 《World Journal of Stem Cells》 SCIE 2024年第6期615-618,共4页
Mesenchymal stem/stromal cells are potential optimal cell sources for stem cell therapies,and pretreatment has proven to enhance cell vitality and function.In a recent publication,Li et al explored a new combination o... Mesenchymal stem/stromal cells are potential optimal cell sources for stem cell therapies,and pretreatment has proven to enhance cell vitality and function.In a recent publication,Li et al explored a new combination of pretreatment condi-tions.Here,we present an editorial to comment on their work and provide our view on mesenchymal stem/stromal cell precondition. 展开更多
关键词 Mesenchymal stem cell PRECONDITION HYPOXIA Inflammation
下载PDF
求解双鞍点问题的一个新预处理子
4
作者 马婉君 《温州大学学报(自然科学版)》 2024年第3期13-22,共10页
对双鞍点问题系数矩阵的子块引入一个合适的对称正定矩阵(不含参数),可以有效避免参数选取困难.基于这种思想,提出了一种新的迭代方法和预处理子用来求解双鞍点问题,给出该迭代方法的收敛条件,并对预处理系统的系数矩阵进行谱分析,数值... 对双鞍点问题系数矩阵的子块引入一个合适的对称正定矩阵(不含参数),可以有效避免参数选取困难.基于这种思想,提出了一种新的迭代方法和预处理子用来求解双鞍点问题,给出该迭代方法的收敛条件,并对预处理系统的系数矩阵进行谱分析,数值实验验证了该预处理子的有效性. 展开更多
关键词 双鞍点问题 预处理子 谱半径 收敛速度
下载PDF
波动方程all-at-once系统的快速α循环绝对值预处理
5
作者 徐果 张建华 《江西科学》 2024年第2期239-243,共5页
为了加快预处理MINRES方法求解波动方程all-at-once系统的收敛速度,基于绝对值预处理子和块状三对角Toeplitz预处理子,提出一种新的α循环绝对值预处理子。理论上证明了预处理矩阵可近似分裂成正交矩阵与低秩矩阵的和,且其特征值聚集在&... 为了加快预处理MINRES方法求解波动方程all-at-once系统的收敛速度,基于绝对值预处理子和块状三对角Toeplitz预处理子,提出一种新的α循环绝对值预处理子。理论上证明了预处理矩阵可近似分裂成正交矩阵与低秩矩阵的和,且其特征值聚集在±1附近,保证了预处理MINRES方法的快速收敛性质。数值实验结果进一步表明了新预处理子的有效性。 展开更多
关键词 波动方程 all-at-once系统 预处理MINRES α循环绝对值预处理子
下载PDF
Construction and Analysis of Structured Preconditioners for Block Two-by-Two Matrices 被引量:8
6
作者 白中治 《Journal of Shanghai University(English Edition)》 CAS 2004年第4期397-405,共9页
For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of structured preconditioners through matrix transformation and matrix approximations. For the specific versions such a... For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of structured preconditioners through matrix transformation and matrix approximations. For the specific versions such as modified block Jacobi-type, modified block Gauss-Seidel-type, and modified block unsymmetric (symmetric) Gauss-Seidel-type preconditioners, we precisely describe their concrete expressions and deliberately analyze eigenvalue distributions and positive definiteness of the preconditioned matrices. Also, we show that when these structured preconditioners are employed to precondition the Krylov subspace methods such as GMRES and restarted GMRES, fast and effective iteration solvers can be obtained for the large sparse systems of linear equations with block two-by-two coefficient matrices. In particular, these structured preconditioners can lead to high-quality preconditioning matrices for some typical matrices from the real-world applications. 展开更多
关键词 block two-by-two matrix PRECONDITIONER modified block relaxation iteration eigenvalue distribution positive definiteness.
下载PDF
Preconditioners for Incompressible Navier-Stokes Solvers 被引量:2
7
作者 A.Segal M.ur Rehman C.Vuik 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第3期245-275,共31页
In this paper we give an overview of the present state of fast solvers for the solution of the incompressible Navier-Stokes equations discretized by the finite element method and linearized by Newton or Picard's m... In this paper we give an overview of the present state of fast solvers for the solution of the incompressible Navier-Stokes equations discretized by the finite element method and linearized by Newton or Picard's method.It is shown that block preconditioners form an excellent approach for the solution,however if the grids are not to fine preconditioning with a Saddle point ILU matrix(SILU) may be an attractive alternative. The applicability of all methods to stabilized elements is investigated.In case of the stand-alone Stokes equations special preconditioners increase the efficiency considerably. 展开更多
关键词 Navier-Stokes equations finite element method block preconditioners SIMPLE-typeschemes iterative methods incompressible fluids.
下载PDF
Biorthogonal Wavelet Based Algebraic Multigrid Preconditioners for Large Sparse Linear Systems 被引量:1
8
作者 A. Padmanabha Reddy Nagendrappa M. Bujurke 《Applied Mathematics》 2011年第11期1378-1381,共4页
In this article algebraic multigrid as preconditioners are designed, with biorthogonal wavelets, as intergrid operators for the Krylov subspace iterative methods. Construction of hierarchy of matrices in algebraic mul... In this article algebraic multigrid as preconditioners are designed, with biorthogonal wavelets, as intergrid operators for the Krylov subspace iterative methods. Construction of hierarchy of matrices in algebraic multigrid context is based on lowpass filter version of Wavelet Transform. The robustness and efficiency of this new approach is tested by applying it to large sparse, unsymmetric and ill-conditioned matrices from Tim Davis collection of sparse matrices. Proposed preconditioners have potential in reducing cputime, operator complexity and storage space of algebraic multigrid V-cycle and meet the desired accuracy of solution compared with that of orthogonal wavelets. 展开更多
关键词 ALGEBRAIC MULTIGRID PRECONDITIONER Wavelet Transform Sparse Matrix Krylov SUBSPACE ITERATIVE Methods
下载PDF
Explicit Iterative Methods of Second Order and Approximate Inverse Preconditioners for Solving Complex Computational Problems
9
作者 Anastasia-Dimitra Lipitakis 《Applied Mathematics》 2020年第4期307-327,共21页
Explicit Exact and Approximate Inverse Preconditioners for solving complex linear systems are introduced. A class of general iterative methods of second order is presented and the selection of iterative parameters is ... Explicit Exact and Approximate Inverse Preconditioners for solving complex linear systems are introduced. A class of general iterative methods of second order is presented and the selection of iterative parameters is discussed. The second order iterative methods behave quite similar to first order methods and the development of efficient preconditioners for solving the original linear system is a decisive factor for making the second order iterative methods superior to the first order iterative methods. Adaptive preconditioned Conjugate Gradient methods using explicit approximate preconditioners for solving efficiently large sparse systems of algebraic equations are also presented. The generalized Approximate Inverse Matrix techniques can be efficiently used in conjunction with explicit iterative schemes leading to effective composite semi-direct solution methods for solving large linear systems of algebraic equations. 展开更多
关键词 APPROXIMATE INVERSE preconditioners ITERATIVE METHODS Second Order ITERATIVE Schemes Exact INVERSE METHODS APPROXIMATE INVERSE EXPLICIT Preconditioning Conjugate Gradients Convergence Analysis
下载PDF
Finite Difference Preconditioners for Legendre Based Spectral Element Methods on Elliptic Boundary Value Problems
10
作者 Seonhee Kim Amik St-Cyr Sang Dong Kim 《Applied Mathematics》 2013年第5期838-847,共10页
Finite difference type preconditioners for spectral element discretizations based on Legendre-Gauss-Lobatto points are analyzed. The latter is employed for the approximation of uniformly elliptic partial differential ... Finite difference type preconditioners for spectral element discretizations based on Legendre-Gauss-Lobatto points are analyzed. The latter is employed for the approximation of uniformly elliptic partial differential problems. In this work, it is shown that the condition number of the resulting preconditioned system is bounded independently of both of the polynomial degrees used in the spectral element method and the element sizes. Several numerical tests verify the h-p independence of the proposed preconditioning. 展开更多
关键词 Finite Difference PRECONDITIONER ITERATIVE METHOD Spectral Element METHOD ELLIPTIC Operator
下载PDF
Uniform Subspace Correction Preconditioners for Discontinuous Galerkin Methods with hp‑Refnement
11
作者 Will Pazner Tzanio Kolev 《Communications on Applied Mathematics and Computation》 2022年第2期697-727,共31页
In this paper,we develop subspace correction preconditioners for discontinuous Galerkin(DG)discretizations of elliptic problems with hp-refnement.These preconditioners are based on the decomposition of the DG fnite el... In this paper,we develop subspace correction preconditioners for discontinuous Galerkin(DG)discretizations of elliptic problems with hp-refnement.These preconditioners are based on the decomposition of the DG fnite element space into a conforming subspace,and a set of small nonconforming edge spaces.The conforming subspace is preconditioned using a matrix-free low-order refned technique,which in this work,we extend to the hprefnement context using a variational restriction approach.The condition number of the resulting linear system is independent of the granularity of the mesh h,and the degree of the polynomial approximation p.The method is amenable to use with meshes of any degree of irregularity and arbitrary distribution of polynomial degrees.Numerical examples are shown on several test cases involving adaptively and randomly refned meshes,using both the symmetric interior penalty method and the second method of Bassi and Rebay(BR2). 展开更多
关键词 Discontinuous Galerkin preconditioners Domain decomposition hprefnement
下载PDF
Domain Decomposition Preconditioners for Mixed Finite-Element Discretization of High-Contrast Elliptic Problems
12
作者 Hui Xie Xuejun Xu 《Communications on Applied Mathematics and Computation》 2019年第1期141-165,共25页
In this paper,we design an efficient domain decomposition(DD)preconditioner for the saddle-point problem resulting from the mixed finite-element discretization of multiscale elliptic problems.By proper equivalent alge... In this paper,we design an efficient domain decomposition(DD)preconditioner for the saddle-point problem resulting from the mixed finite-element discretization of multiscale elliptic problems.By proper equivalent algebraic operations,the original saddle-point system can be transformed to another saddle-point system which can be preconditioned by a block-diagonel matrix efficiently.Actually,the first block of this block-diagonal matrix corresponds to a multiscale H(div)problem,and thus,the direct inverse of this block is unpractical and unstable for the large-scale problem.To remedy this issue,a two-level overlapping DD preconditioner is proposed for this//(div)problem.Our coarse space consists of some velocities obtained from mixed formulation of local eigenvalue problems on the coarse edge patches multiplied by the partition of unity functions and the trivial coarse basis(e.g.,Raviart-Thomas element)on the coarse grid.The condition number of our preconditioned DD method for this multiscale H(div)system is bounded by C(1+务)(1+log4(^)),where 6 denotes the width of overlapping region,and H,h are the typical sizes of the subdomain and fine mesh.Numerical examples are presented to confirm the validity and robustness of our DD preconditioner. 展开更多
关键词 High contrast.Mixed FEM DD PRECONDITIONER Spectral coarse space
下载PDF
卫星目标电磁散射的高效区域分解边界积分法
13
作者 辛熙敏 高红伟 +2 位作者 鲁帆 马炳 盛新庆 《电波科学学报》 CSCD 北大核心 2023年第2期218-226,共9页
近年来,严峻的空天安全问题致使卫星的电磁散射特性分析与控制倍受关注.典型卫星主要由主体、太阳翼和多用途天线等部件组成,呈现多尺度的几何特性,给电磁建模技术带来了挑战.面向卫星的电磁散射特性分析,本文采用不连续伽辽金区域分解... 近年来,严峻的空天安全问题致使卫星的电磁散射特性分析与控制倍受关注.典型卫星主要由主体、太阳翼和多用途天线等部件组成,呈现多尺度的几何特性,给电磁建模技术带来了挑战.面向卫星的电磁散射特性分析,本文采用不连续伽辽金区域分解积分方程(discontinuous Galerkin domain decomposition method of integral equation,DG-DDM-IE)方法构建准确且灵活的计算模型,并基于以往对角区域块(diagonal domain block,DDB)预条件和稀疏近似逆(sparse approximate inverse,SAI)预条件的数值性能研究结果,针对多尺度情况提出一种经济高效的混合型预条件以提高DG-DDM-IE方法的计算能力.复杂多尺度卫星目标数值实验证明,该DG-DDM-IE方法在消耗较少内存的条件下仍保证良好的收敛性和可扩展性. 展开更多
关键词 卫星 多尺度 边界积分方法 区域分解 预条件 电磁散射
下载PDF
An incompressible flow solver on a GPU/CPU heterogeneous architecture parallel computing platform
14
作者 Qianqian Li Rong Li Zixuan Yang 《Theoretical & Applied Mechanics Letters》 CSCD 2023年第5期387-393,共7页
A computational fluid dynamics(CFD)solver for a GPU/CPU heterogeneous architecture parallel computing platform is developed to simulate incompressible flows on billion-level grid points.To solve the Poisson equation,t... A computational fluid dynamics(CFD)solver for a GPU/CPU heterogeneous architecture parallel computing platform is developed to simulate incompressible flows on billion-level grid points.To solve the Poisson equation,the conjugate gradient method is used as a basic solver,and a Chebyshev method in combination with a Jacobi sub-preconditioner is used as a preconditioner.The developed CFD solver shows good performance on parallel efficiency,which exceeds 90%in the weak-scalability test when the number of grid points allocated to each GPU card is greater than 2083.In the acceleration test,it is found that running a simulation with 10403 grid points on 125 GPU cards accelerates by 203.6x over the same number of CPU cores.The developed solver is then tested in the context of a two-dimensional lid-driven cavity flow and three-dimensional Taylor-Green vortex flow.The results are consistent with previous results in the literature. 展开更多
关键词 GPU Acceleration Parallel computing Poisson equation PRECONDITIONER
下载PDF
Semi-regularized Hermitian and Skew-Hermitian Splitting Preconditioning for Saddle-Point Linear Systems
15
作者 Kang-Ya Lu Shu-Jiao Li 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1422-1445,共24页
In this paper,a two-step semi-regularized Hermitian and skew-Hermitian splitting(SHSS)iteration method is constructed by introducing a regularization matrix in the(1,1)-block of the first iteration step,to solve the s... In this paper,a two-step semi-regularized Hermitian and skew-Hermitian splitting(SHSS)iteration method is constructed by introducing a regularization matrix in the(1,1)-block of the first iteration step,to solve the saddle-point linear system.By carefully selecting two different regularization matrices,two kinds of SHSS preconditioners are proposed to accelerate the convergence rates of the Krylov subspace iteration methods.Theoretical analysis about the eigenvalue distribution demonstrates that the proposed SHSS preconditioners can make the eigenvalues of the corresponding preconditioned matrices be clustered around 1 and uniformly bounded away from 0.The eigenvector distribution and the upper bound on the degree of the minimal polynomial of the SHSS-preconditioned matrices indicate that the SHSS-preconditioned Krylov subspace iterative methods can converge to the true solution within finite steps in exact arithmetic.In addition,the numerical example derived from the optimal control problem shows that the SHSS preconditioners can significantly improve the convergence speeds of the Krylov subspace iteration methods,and their convergence rates are independent of the discrete mesh size. 展开更多
关键词 Hermitian and skew-Hermitian splitting(HSS) EIGENVALUES EIGENVECTORS PRECONDITIONER Saddle-point linear system
下载PDF
解不可压缩Navier-Stokes方程的非精确块因子分解预处理子 被引量:1
16
作者 宋胜重 黄正达 《高校应用数学学报(A辑)》 北大核心 2023年第3期317-328,共12页
针对相关于不可压缩Navier-Stokes方程数值求解的一类3×3块结构的线性方程组,基于线性方程组的等价形式,构造了一个非精确的块因子分解预处理子,在新的特征值等价矩阵形式的基础上,得到了预处理矩阵特征值实部和虚部的上下界估计.... 针对相关于不可压缩Navier-Stokes方程数值求解的一类3×3块结构的线性方程组,基于线性方程组的等价形式,构造了一个非精确的块因子分解预处理子,在新的特征值等价矩阵形式的基础上,得到了预处理矩阵特征值实部和虚部的上下界估计.数值实验表明,与已有的预处理子相比,所构造的预处理子可以使得GMRES迭代方法对网格尺寸,网格形式以及粘度系数的依赖性都比较弱,且在迭代步数和CPU时间上都占优. 展开更多
关键词 不可压缩NAVIER-STOKES方程 预处理子 特征值 GMRES
下载PDF
Two-Parameter Block Triangular Splitting Preconditioner for Block Two-by-Two Linear Systems
17
作者 Bo Wu Xingbao Gao 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1601-1615,共15页
This paper proposes a two-parameter block triangular splitting(TPTS)preconditioner for the general block two-by-two linear systems.The eigenvalues of the corresponding preconditioned matrix are proved to cluster aroun... This paper proposes a two-parameter block triangular splitting(TPTS)preconditioner for the general block two-by-two linear systems.The eigenvalues of the corresponding preconditioned matrix are proved to cluster around 0 or 1 under mild conditions.The limited numerical results show that the TPTS preconditioner is more efficient than the classic block-diagonal and block-triangular preconditioners when applied to the flexible generalized minimal residual(FGMRES)method. 展开更多
关键词 Block triangular splitting Block two-by-two linear systems Eigenvalues PRECONDITIONER flexible generalized minimal residual(FGMRES)
下载PDF
变系数反应扩散方程的双参数分裂预处理方法 被引量:1
18
作者 蒋沁纱 陈浩 《四川师范大学学报(自然科学版)》 CAS 2023年第5期638-645,共8页
考虑一类空间变系数反应扩散方程的快速算法.针对二阶改进道格拉斯分裂时间离散所得线性代数系统,构造一类双参数交替分裂迭代方法.分析格式的收敛性,给出最优参数的取值,并获得相应预处理子.数值结果验证新方法的有效性及相比单参数分... 考虑一类空间变系数反应扩散方程的快速算法.针对二阶改进道格拉斯分裂时间离散所得线性代数系统,构造一类双参数交替分裂迭代方法.分析格式的收敛性,给出最优参数的取值,并获得相应预处理子.数值结果验证新方法的有效性及相比单参数分裂迭代格式的优越性. 展开更多
关键词 变系数反应扩散方程 改进道格拉斯分裂方法 双参数 交替分裂迭代方法 预处理子
下载PDF
求解三维裂缝型多孔介质流体的场分裂预条件子研究
19
作者 杨念 杨海建 邵柏强 《数学理论与应用》 2023年第4期123-137,共15页
随着Newton-Krylov方法在求解大型稀疏非线性方程组中的逐步应用,线性预条件子的设计对整个求解器起着至关重要的作用.本文研究基于物理和区域分解方法的不同组合的场分裂(Field-Split,FS)预条件子,并应用于裂缝型多孔介质的非定常流动... 随着Newton-Krylov方法在求解大型稀疏非线性方程组中的逐步应用,线性预条件子的设计对整个求解器起着至关重要的作用.本文研究基于物理和区域分解方法的不同组合的场分裂(Field-Split,FS)预条件子,并应用于裂缝型多孔介质的非定常流动问题.在区域分解的框架下,考虑几种新的FS预条件子:加性FS预条件子、乘性FS预条件子、舒尔补FS预条件子和约束压力残差(Constrained Pressure Residual,CPR)预条件子,对相应的子系统采用限制加性Schwarz算法(Restricted additive Schwarz algorithm,RAS)进行近似求解.为了进一步提高场分裂预条件子的数值性能,提出并构建两水平的场分裂预条件子.最后在天河二号超算平台上进行数值实验,结果显示所提出的预条件子具有良好的鲁棒性和并行可扩展性. 展开更多
关键词 油藏模拟 限制加性Schwarz算法 场分裂预条件子 并行计算
下载PDF
Linear System Solutions of the Navier-Stokes Equations with Application to Flow over a Backward-Facing Step
20
作者 Achraf Badahmane 《Open Journal of Fluid Dynamics》 2023年第3期133-143,共11页
Many applications in fluid mechanics require the numerical solution of sequences of linear systems typically issued from finite element discretization of the Navier-Stokes equations. The resulting matrices then exhibi... Many applications in fluid mechanics require the numerical solution of sequences of linear systems typically issued from finite element discretization of the Navier-Stokes equations. The resulting matrices then exhibit a saddle point structure. To achieve this task, a Newton-based root-finding algorithm is usually employed which in turn necessitates to solve a saddle point system at every Newton iteration. The involved linear systems being large scale and ill-conditioned, effective linear solvers must be implemented. Here, we develop and test several methods for solving the saddle point systems, considering in particular the LU factorization, as direct approach, and the preconditioned generalized minimal residual (ΡGMRES) solver, an iterative approach. We apply the various solvers within the root-finding algorithm for Flow over backward facing step systems. The particularity of Flow over backward facing step system is an interesting case for studying the performance and solution strategy of a turbulence model. In this case, the flow is subjected to a sudden increase of cross-sectional area, resulting in a separation of flow starting at the point of expansion, making the system of differential equations particularly stiff. We assess the performance of the direct and iterative solvers in terms of computational time, numbers of Newton iterations and time steps. 展开更多
关键词 Navier-Stokes Equation ΡGMRES Direct Solver Schur Approach PRECONDITIONER
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部