Accurate prediction of sea surface temperature (SST) is extremely important for forecasting oceanic environmental events and for ocean studies. However, the existing SST prediction methods do not consider the seasonal...Accurate prediction of sea surface temperature (SST) is extremely important for forecasting oceanic environmental events and for ocean studies. However, the existing SST prediction methods do not consider the seasonal periodicity and abnormal fluctuation characteristics of SST or the importance of historical SST data from different times;thus, these methods suffer from low prediction accuracy. To solve this problem, we comprehensively consider the effects of seasonal periodicity and abnormal fluctuation characteristics of SST data, as well as the influence of historical data in different periods, on prediction accuracy. We propose a novel ensemble learning approach that combines the Predictive Recurrent Neural Network(PredRNN) network and an attention mechanism for effective SST field prediction. In this approach, the XGBoost model is used to learn the long-period fluctuation law of SST and to extract seasonal periodic features from SST data. The exponential smoothing method is used to mitigate the impact of severely abnormal SST fluctuations and extract the a priori features of SST data. The outputs of the two aforementioned models and the original SST data are stacked and used as inputs for the next model, the PredRNN network. PredRNN is the most recently developed spatiotemporal deep learning network, which simulates both spatial and temporal representations and is capable of transferring memory across layers and time steps. Therefore, we used it to extract the spatiotemporal correlations of SST data and predict future SSTs. Finally, an attention mechanism is added to capture the importance of different historical SST data, weigh the output of each step of the PredRNN network, and improve the prediction accuracy. The experimental results on two ocean datasets confirm that the proposed approach achieves higher training efficiency and prediction accuracy than the existing SST field prediction approaches do.展开更多
基金supported by the National Key R&D Program of China(2016YFC1401900)the National Natural Science Foundation of China(Grant Nos.61872072 and 61073063).
文摘Accurate prediction of sea surface temperature (SST) is extremely important for forecasting oceanic environmental events and for ocean studies. However, the existing SST prediction methods do not consider the seasonal periodicity and abnormal fluctuation characteristics of SST or the importance of historical SST data from different times;thus, these methods suffer from low prediction accuracy. To solve this problem, we comprehensively consider the effects of seasonal periodicity and abnormal fluctuation characteristics of SST data, as well as the influence of historical data in different periods, on prediction accuracy. We propose a novel ensemble learning approach that combines the Predictive Recurrent Neural Network(PredRNN) network and an attention mechanism for effective SST field prediction. In this approach, the XGBoost model is used to learn the long-period fluctuation law of SST and to extract seasonal periodic features from SST data. The exponential smoothing method is used to mitigate the impact of severely abnormal SST fluctuations and extract the a priori features of SST data. The outputs of the two aforementioned models and the original SST data are stacked and used as inputs for the next model, the PredRNN network. PredRNN is the most recently developed spatiotemporal deep learning network, which simulates both spatial and temporal representations and is capable of transferring memory across layers and time steps. Therefore, we used it to extract the spatiotemporal correlations of SST data and predict future SSTs. Finally, an attention mechanism is added to capture the importance of different historical SST data, weigh the output of each step of the PredRNN network, and improve the prediction accuracy. The experimental results on two ocean datasets confirm that the proposed approach achieves higher training efficiency and prediction accuracy than the existing SST field prediction approaches do.