BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling techn...BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance.展开更多
Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenom...Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenomenon of postoperative delirium(POD),shedding light on a study that explores POD in elderly individuals undergoing abdominal malignancy surgery.The study examines pathophysiology and predictive determinants,offering valuable insights into this challenging clinical scenario.Employing the synthetic minority oversampling technique,a predictive model is developed,incorporating critical risk factors such as comorbidity index,anesthesia grade,and surgical duration.There is an urgent need for accurate risk factor identification to mitigate POD incidence.While specific to elderly patients with abdominal malignancies,the findings contribute significantly to understanding delirium pathophysiology and prediction.Further research is warranted to establish standardized predictive for enhanced generalizability.展开更多
Objective:To determine the most influential data features and to develop machine learning approaches that best predict hospital readmissions among patients with diabetes.Methods:In this retrospective cohort study,we s...Objective:To determine the most influential data features and to develop machine learning approaches that best predict hospital readmissions among patients with diabetes.Methods:In this retrospective cohort study,we surveyed patient statistics and performed feature analysis to identify the most influential data features associated with readmissions.Classification of all-cause,30-day readmission outcomes were modeled using logistic regression,artificial neural network,and Easy Ensemble.F1 statistic,sensitivity,and positive predictive value were used to evaluate the model performance.Results:We identified 14 most influential data features(4 numeric features and 10 categorical features)and evaluated 3 machine learning models with numerous sampling methods(oversampling,undersampling,and hybrid techniques).The deep learning model offered no improvement over traditional models(logistic regression and Easy Ensemble)for predicting readmission,whereas the other two algorithms led to much smaller differences between the training and testing datasets.Conclusions:Machine learning approaches to record electronic health data offer a promising method for improving readmission prediction in patients with diabetes.But more work is needed to construct datasets with more clinical variables beyond the standard risk factors and to fine-tune and optimize machine learning models.展开更多
This article presents two approaches for automated building of knowledge bases of soil resources mapping. These methods used decision tree and Bayesian predictive modeling, respectively to generate knowledge from tra...This article presents two approaches for automated building of knowledge bases of soil resources mapping. These methods used decision tree and Bayesian predictive modeling, respectively to generate knowledge from training data. With these methods, building a knowledge base for automated soil mapping is easier than using the conventional knowledge acquisition approach. The knowledge bases built by these two methods were used by the knowledge classifier for soil type classification of the Longyou area, Zhejiang Province, China using TM bi-temporal imageries and GIS data. To evaluate the performance of the resultant knowledge bases, the classification results were compared to existing soil map based on field survey. The accuracy assessment and analysis of the resultant soil maps suggested that the knowledge bases built by these two methods were of good quality for mapping distribution model of soil classes over the study area.展开更多
To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital d...To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital drill holes in aluminum alloy 6061.Firstly,four cutting control parameters(tool rotation speed,tool revolution speed,axial feeding pitch and tool revolution radius)and affecting cutting forces are identified after orbital drilling kinematics analysis.Secondly,hybrid level orthogonal experiment method is utilized in modeling experiment.By nonlinear regression analysis,two quadratic prediction models for axial and radial forces are established,where the above four control parameters are used as input variables.Then,model accuracy and cutting control parameters are analyzed.Upon axial and radial forces models,two optimal combinations of cutting control parameters are obtained for processing a13mm hole,corresponding to the minimum axial force and the radial force respectively.Finally,each optimal combination is applied in verification experiment.The verification experiment results of cutting force are in good agreement with prediction model,which confirms accracy of the research method in practical production.展开更多
Settlement prediction of geosynthetic-reinforced soil(GRS)abutments under service loading conditions is an arduous and challenging task for practicing geotechnical/civil engineers.Hence,in this paper,a novel hybrid ar...Settlement prediction of geosynthetic-reinforced soil(GRS)abutments under service loading conditions is an arduous and challenging task for practicing geotechnical/civil engineers.Hence,in this paper,a novel hybrid artificial intelligence(AI)-based model was developed by the combination of artificial neural network(ANN)and Harris hawks’optimisation(HHO),that is,ANN-HHO,to predict the settlement of the GRS abutments.Five other robust intelligent models such as support vector regression(SVR),Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimisation regression(SMOR),and least-median square regression(LMSR)were constructed and compared to the ANN-HHO model.The predictive strength,relalibility and robustness of the model were evaluated based on rigorous statistical testing,ranking criteria,multi-criteria approach,uncertainity analysis and sensitivity analysis(SA).Moreover,the predictive veracity of the model was also substantiated against several large-scale independent experimental studies on GRS abutments reported in the scientific literature.The acquired findings demonstrated that the ANN-HHO model predicted the settlement of GRS abutments with reasonable accuracy and yielded superior performance in comparison to counterpart models.Therefore,it becomes one of predictive tools employed by geotechnical/civil engineers in preliminary decision-making when investigating the in-service performance of GRS abutments.Finally,the model has been converted into a simple mathematical formulation for easy hand calculations,and it is proved cost-effective and less time-consuming in comparison to experimental tests and numerical simulations.展开更多
Predictive microbiology was utilized to model Staphylococcus aureus (S. aureus) growth and staphylococcal enterotoxin A (SEA) production in milk in this study. The modifed logistic model, modifed Gompertz model an...Predictive microbiology was utilized to model Staphylococcus aureus (S. aureus) growth and staphylococcal enterotoxin A (SEA) production in milk in this study. The modifed logistic model, modifed Gompertz model and Baranyi model were applied to model growth data of S. aureus between 15℃ and 37℃. Model comparisons indicated that Baranyi model described the growth data more accurately than two others with a mean square error of 0.0129. Growth rates generated from Baranyi model matched the observed ones with a bias factor of 0.999 and an accuracy factor of 1.01, and ft a square root model with respect to temperature; other two modifed models both overestimated the observed ones. SEA amount began to be detected when the cell number reached106.4 cfu ? mL-1, and showed the linear correlation with time. Besides, the rate of SEA production ftted an exponential relationship as a function of temperature. Predictions based on the study could be applied to indicate possible growth of S. aureus and prevent the occurrence of staphylococcal food poisoning.展开更多
Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(W...Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(WFGD)system is proposed which provides a more flexible framework of optimal control and decision-making compared with PID scheme.At first,a mathematical model of the FGD process is deduced which is suitable for NMPC structure.To equipoise the model’s accuracy and conciseness,the wet limestone FGD system is separated into several modules.Based on the conservation laws,a model with reasonable simplification is developed to describe dynamics of different modules for the purpose of controller design.Then,by addressing economic objectives directly into the NMPC scheme,the NMPC controller can minimize economic cost and track the set-point simultaneously.The accuracy of model is validated by the field data of a 1000 MW thermal power plant in Henan Province,China.The simulation results show that the NMPC strategy improves the economic performance and ensures the emission requirement at the same time.In the meantime,the control scheme satisfies the multiobjective control requirements under complex operation conditions(e.g.,boiler load fluctuation and set point variation).The mathematical model and NMPC structure provides the basic work for the future development of advanced optimized control algorithms in the wet limestone FGD systems.展开更多
There has been evidence of crime in the US since colonization. In this article, we analyze the crime statistics of San Francisco and its resolution of crime recorded from January to September of the year 2018. We defi...There has been evidence of crime in the US since colonization. In this article, we analyze the crime statistics of San Francisco and its resolution of crime recorded from January to September of the year 2018. We define resolution of crime as a target variable and study its relationship with other variables. We make several classification models to predict resolution of crime using several data mining techniques and suggest the best model for predicting resolution.展开更多
Artificial intelligence(AI)and digital twin models of various systems have long been used in industry to test products quickly and efficiently.Use of digital twins in clinical medicine caught attention with the develo...Artificial intelligence(AI)and digital twin models of various systems have long been used in industry to test products quickly and efficiently.Use of digital twins in clinical medicine caught attention with the development of Archimedes,an AI model of diabetes,in 2003.More recently,AI models have been applied to the fields of cardiology,endocrinology,and undergraduate medical education.The use of digital twins and AI thus far has focused mainly on chronic disease management,their application in the field of critical care medicine remains much less explored.In neurocritical care,current AI technology focuses on interpreting electroencephalography,monitoring intracranial pressure,and prognosticating outcomes.AI models have been developed to interpret electroencephalograms by helping to annotate the tracings,detecting seizures,and identifying brain activation in unresponsive patients.In this mini-review we describe the challenges and opportunities in building an actionable AI model pertinent to neurocritical care that can be used to educate the newer generation of clinicians and augment clinical decision making.展开更多
Lithium ion battery has typical character of distributed parameter system, and can be described precisely by partial differential equations and multi-physics theory because lithium ion battery is a complicated electro...Lithium ion battery has typical character of distributed parameter system, and can be described precisely by partial differential equations and multi-physics theory because lithium ion battery is a complicated electrochemical energy storage system. A novel failure prediction modeling method of lithium ion battery based on distributed parameter estimation and single particle model is proposed in this work. Lithium ion concentration in the anode of lithium ion battery is an unmeasurable distributed variable. Failure prediction system can estimate lithium ion concentration online, track the failure residual which is the difference between the estimated value and the ideal value. The precaution signal will be triggered when the failure residual is beyond the predefined failure precaution threshold, and the failure countdown prediction module will be activated. The remaining time of the severe failure threshold can be estimated by the failure countdown prediction module according to the changing rate of the failure residual. A simulation example verifies that lithium ion concentration in the anode of lithium ion battery can be estimated exactly and effectively by the failure prediction model. The precaution signal can be triggered reliably, and the remaining time of the severe failure can be forecasted accurately by the failure countdown prediction module.展开更多
Multiple Sclerosis(MS) is a major cause of neurological disability in adults and has an annual cost of approximately $28 billion in the United States. MS is a very complex disorder as demyelination can happen in a v...Multiple Sclerosis(MS) is a major cause of neurological disability in adults and has an annual cost of approximately $28 billion in the United States. MS is a very complex disorder as demyelination can happen in a variety of locations throughout the brain; therefore, this disease is never the same in two patients making it very hard to predict disease progression. A modeling approach which combines clinical, biological and imaging measures to help treat and fight this disorder is needed. In this paper, I will outline MS as a very heterogeneous disorder, review some potential solutions from the literature, demonstrate the need for a biomarker and will discuss how computational modeling combined with biological, clinical and imaging data can help link disparate observations and decipher complex mechanisms whose solutions are not amenable to simple reductionism.展开更多
Background:Choosing the appropriate antipsychotic drug(APD)treatment for patients with schizophrenia(SCZ)can be challenging,as the treatment response to APD is highly variable and difficult to predict due to the lack ...Background:Choosing the appropriate antipsychotic drug(APD)treatment for patients with schizophrenia(SCZ)can be challenging,as the treatment response to APD is highly variable and difficult to predict due to the lack of effective biomarkers.Previous studies have indicated the association between treatment response and genetic and epigenetic factors,but no effective biomarkers have been identified.Hence,further research is imperative to enhance precision medicine in SCZ treatment.Methods:Participants with SCZ were recruited from two randomized trials.The discovery cohort was recruited from the CAPOC trial(n=2307)involved 6 weeks of treatment and equally randomized the participants to the Olanzapine,Risperidone,Quetiapine,Aripiprazole,Ziprasidone,and Haloperidol/Perphenazine(subsequently equally assigned to one or the other)groups.The external validation cohort was recruited from the CAPEC trial(n=1379),which involved 8 weeks of treatment and equally randomized the participants to the Olanzapine,Risperidone,and Aripiprazole groups.Additionally,healthy controls(n=275)from the local community were utilized as a genetic/epigenetic reference.The genetic and epigenetic(DNA methylation)risks of SCZ were assessed using the polygenic risk score(PRS)and polymethylation score,respectively.The study also examined the genetic-epigenetic interactions with treatment response through differential methylation analysis,methylation quantitative trait loci,colocalization,and promoteranchored chromatin interaction.Machine learning was used to develop a prediction model for treatment response,which was evaluated for accuracy and clinical benefit using the area under curve(AUC)for classification,R^(2) for regression,and decision curve analysis.Results:Six risk genes for SCZ(LINC01795,DDHD2,SBNO1,KCNG2,SEMA7A,and RUFY1)involved in cortical morphology were identified as having a genetic-epigenetic interaction associated with treatment response.The developed and externally validated prediction model,which incorporated clinical information,PRS,genetic risk score(GRS),and proxy methylation level(proxyDNAm),demonstrated positive benefits for a wide range of patients receiving different APDs,regardless of sex[discovery cohort:AUC=0.874(95%CI 0.867-0.881),R^(2)=0.478;external validation cohort:AUC=0.851(95%CI 0.841-0.861),R^(2)=0.507].Conclusions:This study presents a promising precision medicine approach to evaluate treatment response,which has the potential to aid clinicians in making informed decisions about APD treatment for patients with SCZ.Trial registration Chinese Clinical Trial Registry(https://www.chictr.org.cn/),18 Aug 2009 retrospectively registered:CAPOC-ChiCTR-RNC-09000521(https://www.chictr.org.cn/showproj.aspx?proj=9014),CAPEC-ChiCTRRNC-09000522(https://www.chictr.org.cn/showproj.aspx?proj=9013).展开更多
Background: Primary non-function(PNF) and early allograft failure(EAF) after liver transplantation(LT) seriously affect patient outcomes. In clinical practice, effective prognostic tools for early identifying recipien...Background: Primary non-function(PNF) and early allograft failure(EAF) after liver transplantation(LT) seriously affect patient outcomes. In clinical practice, effective prognostic tools for early identifying recipients at high risk of PNF and EAF were urgently needed. Recently, the Model for Early Allograft Function(MEAF), PNF score by King's College(King-PNF) and Balance-and-Risk-Lactate(BAR-Lac) score were developed to assess the risks of PNF and EAF. This study aimed to externally validate and compare the prognostic performance of these three scores for predicting PNF and EAF. Methods: A retrospective study included 720 patients with primary LT between January 2015 and December 2020. MEAF, King-PNF and BAR-Lac scores were compared using receiver operating characteristic(ROC) and the net reclassification improvement(NRI) and integrated discrimination improvement(IDI) analyses. Results: Of all 720 patients, 28(3.9%) developed PNF and 67(9.3%) developed EAF in 3 months. The overall early allograft dysfunction(EAD) rate was 39.0%. The 3-month patient mortality was 8.6% while 1-year graft-failure-free survival was 89.2%. The median MEAF, King-PNF and BAR-Lac scores were 5.0(3.5–6.3),-2.1(-2.6 to-1.2), and 5.0(2.0–11.0), respectively. For predicting PNF, MEAF and King-PNF scores had excellent area under curves(AUCs) of 0.872 and 0.891, superior to BAR-Lac(AUC = 0.830). The NRI and IDI analyses confirmed that King-PNF score had the best performance in predicting PNF while MEAF served as a better predictor of EAD. The EAF risk curve and 1-year graft-failure-free survival curve showed that King-PNF was superior to MEAF and BAR-Lac scores for stratifying the risk of EAF. Conclusions: MEAF, King-PNF and BAR-Lac were validated as practical and effective risk assessment tools of PNF. King-PNF score outperformed MEAF and BAR-Lac in predicting PNF and EAF within 6 months. BAR-Lac score had a huge advantage in the prediction for PNF without post-transplant variables. Proper use of these scores will help early identify PNF, standardize grading of EAF and reasonably select clinical endpoints in relative studies.展开更多
A method of fuzzy modeling based on fuzzy clustering and Kalman filtering was proposed for predicting M s temperature from chemical composition for martensitic stainless steel. The membership degree of each sample wa...A method of fuzzy modeling based on fuzzy clustering and Kalman filtering was proposed for predicting M s temperature from chemical composition for martensitic stainless steel. The membership degree of each sample was calculated by the fuzzy clustering algorithm. Kalman filtering was used to identify the consequent parameters. Only Grade 95 steel are available for training and validation, and the fuzzy model is valid for the following element concentration ranges (wt%): 0.01<C<0.7; 0<Si<1.0; 0.10<Mn<1.25; 11.5<Cr< 17.5; 0<Ni<2.5; 0<Mo<1.0. Compared with that of several empirical models reported, the accuracy of the fuzzy model was almost 5 times higher than that of the best empirical model. Furthermore, the compositional dependences of Ms were successfully determined and compared with those of the empirical formulae. It was found that the specific element dependences were a function of the overall composition, something could not easily be found using conventional statistics.展开更多
Sources of uncertainty or error that arise in attempting to scale up the results of laboratory-scale sediment transport studies for predictive modeling of geomorphic systems include: (i) model imperfec...Sources of uncertainty or error that arise in attempting to scale up the results of laboratory-scale sediment transport studies for predictive modeling of geomorphic systems include: (i) model imperfection, (ii) omission of important processes, (iii) lack of knowledge of initial conditions, (iv) sensitivity to initial conditions, (v) unresolved heterogeneity, (vi) occurrence of external forcing, and (vii) inapplicability of the factor of safety concept. Sources of uncertainty that are unimportant or that can be controlled at small scales and over short time scales become important in large-scale applications and over long time scales. Control and repeatability, hallmarks of laboratory-scale experiments, are usually lacking at the large scales characteristic of geomorphology. Heterogeneity is an important concomitant of size, and tends to make large systems unique. Uniqueness implies that prediction cannot be based upon first-principles quantitative modeling alone, but must be a function of system history as well. Periodic data collection, feedback, and model updating are essential where site-specific prediction is required.展开更多
Intelligent healthcare networks represent a significant component in digital applications,where the requirements hold within quality-of-service(QoS)reliability and safeguarding privacy.This paper addresses these requi...Intelligent healthcare networks represent a significant component in digital applications,where the requirements hold within quality-of-service(QoS)reliability and safeguarding privacy.This paper addresses these requirements through the integration of enabler paradigms,including federated learning(FL),cloud/edge computing,softwaredefined/virtualized networking infrastructure,and converged prediction algorithms.The study focuses on achieving reliability and efficiency in real-time prediction models,which depend on the interaction flows and network topology.In response to these challenges,we introduce a modified version of federated logistic regression(FLR)that takes into account convergence latencies and the accuracy of the final FL model within healthcare networks.To establish the FLR framework for mission-critical healthcare applications,we provide a comprehensive workflow in this paper,introducing framework setup,iterative round communications,and model evaluation/deployment.Our optimization process delves into the formulation of loss functions and gradients within the domain of federated optimization,which concludes with the generation of service experience batches for model deployment.To assess the practicality of our approach,we conducted experiments using a hypertension prediction model with data sourced from the 2019 annual dataset(Version 2.0.1)of the Korea Medical Panel Survey.Performance metrics,including end-to-end execution delays,model drop/delivery ratios,and final model accuracies,are captured and compared between the proposed FLR framework and other baseline schemes.Our study offers an FLR framework setup for the enhancement of real-time prediction modeling within intelligent healthcare networks,addressing the critical demands of QoS reliability and privacy preservation.展开更多
BACKGROUND Study on influencing factors of gastric retention before endoscopic retrograde cholangiopancreatography(ERCP)background:With the wide application of ERCP,the risk of preoperative gastric retention affects t...BACKGROUND Study on influencing factors of gastric retention before endoscopic retrograde cholangiopancreatography(ERCP)background:With the wide application of ERCP,the risk of preoperative gastric retention affects the smooth progress of the operation.The study found that female,biliary and pancreatic malignant tumor,digestive tract obstruction and other factors are closely related to gastric retention,so the establishment of predictive model is very important to reduce the risk of operation.METHODS A retrospective analysis was conducted on 190 patients admitted to our hospital for ERCP preparation between January 2020 and February 2024.Patient baseline clinical data were collected using an electronic medical record system.Patients were randomly matched in a 1:4 ratio with data from 190 patients during the same period to establish a validation group(n=38)and a modeling group(n=152).Patients in the modeling group were divided into the gastric retention group(n=52)and non-gastric retention group(n=100)based on whether gastric retention occurred preoperatively.General data of patients in the validation group and identify factors influencing preoperative gastric retention in ERCP patients.A predictive model for preoperative gastric retention in ERCP patients was constructed,and calibration curves were used for validation.The receiver operating characteristic(ROC)curve was analyzed to evaluate the predictive value of the model.RESULTS We found no statistically significant difference in general data between the validation group and modeling group(P>0.05).The comparison of age,body mass index,hypertension,and diabetes between the two groups showed no statistically significant difference(P>0.05).However,we noted statistically significant differences in gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction between the two groups(P<0.05).Mul-tivariate logistic regression analysis showed that gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction were independent factors influencing preoperative gastric retention in ERCP patients(P<0.05).The results of logistic regression analysis revealed that gender,primary disease,jaundice,opioid use,and gastroin-testinal obstruction were included in the predictive model for preoperative gastric retention in ERCP patients.The calibration curves in the training set and validation set showed a slope close to 1,indicating good consistency between the predicted risk and actual risk.The ROC analysis results showed that the area under the curve(AUC)of the predictive model for preoperative gastric retention in ERCP patients in the training set was 0.901 with a standard error of 0.023(95%CI:0.8264-0.9567),and the optimal cutoff value was 0.71,with a sensitivity of 87.5 and specificity of 84.2.In the validation set,the AUC of the predictive model was 0.842 with a standard error of 0.013(95%CI:0.8061-0.9216),and the optimal cutoff value was 0.56,with a sensitivity of 56.2 and specificity of 100.0.CONCLUSION Gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction are factors influencing preoperative gastric retention in ERCP patients.A predictive model established based on these factors has high predictive value.展开更多
BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages ...BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages that cannot be treated by radical surgery and which are accompanied by complications such as bodily pain and bone metastasis.Therefore,attention should be given to the mental health status of PC patients as well as physical adverse events in the course of clinical treatment.AIM To analyze the risk factors leading to anxiety and depression in PC patients after castration and build a risk prediction model.METHODS A retrospective analysis was performed on the data of 120 PC cases treated in Xi'an People's Hospital between January 2019 and January 2022.The patient cohort was divided into a training group(n=84)and a validation group(n=36)at a ratio of 7:3.The patients’anxiety symptoms and depression levels were assessed 2 wk after surgery with the Self-Rating Anxiety Scale(SAS)and the Selfrating Depression Scale(SDS),respectively.Logistic regression was used to analyze the risk factors affecting negative mood,and a risk prediction model was constructed.RESULTS In the training group,35 patients and 37 patients had an SAS score and an SDS score greater than or equal to 50,respectively.Based on the scores,we further subclassified patients into two groups:a bad mood group(n=35)and an emotional stability group(n=49).Multivariate logistic regression analysis showed that marital status,castration scheme,and postoperative Visual Analogue Scale(VAS)score were independent risk factors affecting a patient's bad mood(P<0.05).In the training and validation groups,patients with adverse emotions exhibited significantly higher risk scores than emotionally stable patients(P<0.0001).The area under the curve(AUC)of the risk prediction model for predicting bad mood in the training group was 0.743,the specificity was 70.96%,and the sensitivity was 66.03%,while in the validation group,the AUC,specificity,and sensitivity were 0.755,66.67%,and 76.19%,respectively.The Hosmer-Lemeshow test showed aχ^(2) of 4.2856,a P value of 0.830,and a C-index of 0.773(0.692-0.854).The calibration curve revealed that the predicted curve was basically consistent with the actual curve,and the calibration curve showed that the prediction model had good discrimination and accuracy.Decision curve analysis showed that the model had a high net profit.CONCLUSION In PC patients,marital status,castration scheme,and postoperative pain(VAS)score are important factors affecting postoperative anxiety and depression.The logistic regression model can be used to successfully predict the risk of adverse psychological emotions.展开更多
Oil wells on the North Slope of Alaska pass through deep deposits of permafrost. The heat transferred during their operation causes localized thawing, resulting in ground subsidence adjacent to the well casings. This ...Oil wells on the North Slope of Alaska pass through deep deposits of permafrost. The heat transferred during their operation causes localized thawing, resulting in ground subsidence adjacent to the well casings. This subsidence has a damaging effect, causing the casings to compress, deform, and potentially fail. This paper presents the results of a laboratory study of the thaw consolidation strain of deep permafrost and its predictive modeling. Tests were performed to determine strains due to thaw and post-thaw loading, as well as soil index properties. Results, together with data from an earlier testing program, were used to produce empirical models for predicting strains and ground subsidence. Four distinct strain cases were analyzed with three models by multiple regression analyses, and the best-fitting model was selected for each case. Models were further compared in a ground subsidence prediction using a shared subsurface profile. Laboratory results indicate that strains due to thaw and post-thaw testing in deep core permafrost are insensitive to depth and are more strongly influenced by stress redistributions and the presence of ice lenses and inclusions. Modeling results show that the most statistically valid and useful models were those constructed using moisture content, porosity, and degree of saturation. The applicability of these models was validated by comparison with results from Finite Element modeling.展开更多
基金Supported by Discipline Advancement Program of Shanghai Fourth People’s Hospital,No.SY-XKZT-2020-2013.
文摘BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance.
文摘Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenomenon of postoperative delirium(POD),shedding light on a study that explores POD in elderly individuals undergoing abdominal malignancy surgery.The study examines pathophysiology and predictive determinants,offering valuable insights into this challenging clinical scenario.Employing the synthetic minority oversampling technique,a predictive model is developed,incorporating critical risk factors such as comorbidity index,anesthesia grade,and surgical duration.There is an urgent need for accurate risk factor identification to mitigate POD incidence.While specific to elderly patients with abdominal malignancies,the findings contribute significantly to understanding delirium pathophysiology and prediction.Further research is warranted to establish standardized predictive for enhanced generalizability.
基金supported in part by the Key Research and Development Program for Guangdong Province(No.2019B010136001)in part by Hainan Major Science and Technology Projects(No.ZDKJ2019010)+3 种基金in part by the National Key Research and Development Program of China(No.2016YFB0800803 and No.2018YFB1004005)in part by National Natural Science Foundation of China(No.81960565,No.81260139,No.81060073,No.81560275,No.61562021,No.30560161 and No.61872110)in part by Hainan Special Projects of Social Development(No.ZDYF2018103 and No.2015SF 39)in part by Hainan Association for Academic Excellence Youth Science and Technology Innovation Program(No.201515)
文摘Objective:To determine the most influential data features and to develop machine learning approaches that best predict hospital readmissions among patients with diabetes.Methods:In this retrospective cohort study,we surveyed patient statistics and performed feature analysis to identify the most influential data features associated with readmissions.Classification of all-cause,30-day readmission outcomes were modeled using logistic regression,artificial neural network,and Easy Ensemble.F1 statistic,sensitivity,and positive predictive value were used to evaluate the model performance.Results:We identified 14 most influential data features(4 numeric features and 10 categorical features)and evaluated 3 machine learning models with numerous sampling methods(oversampling,undersampling,and hybrid techniques).The deep learning model offered no improvement over traditional models(logistic regression and Easy Ensemble)for predicting readmission,whereas the other two algorithms led to much smaller differences between the training and testing datasets.Conclusions:Machine learning approaches to record electronic health data offer a promising method for improving readmission prediction in patients with diabetes.But more work is needed to construct datasets with more clinical variables beyond the standard risk factors and to fine-tune and optimize machine learning models.
基金Project supported by the National Natural Science Foundation ofChina (No. 40101014) and by the Science and technology Committee of Zhejiang Province (No. 001110445) China
文摘This article presents two approaches for automated building of knowledge bases of soil resources mapping. These methods used decision tree and Bayesian predictive modeling, respectively to generate knowledge from training data. With these methods, building a knowledge base for automated soil mapping is easier than using the conventional knowledge acquisition approach. The knowledge bases built by these two methods were used by the knowledge classifier for soil type classification of the Longyou area, Zhejiang Province, China using TM bi-temporal imageries and GIS data. To evaluate the performance of the resultant knowledge bases, the classification results were compared to existing soil map based on field survey. The accuracy assessment and analysis of the resultant soil maps suggested that the knowledge bases built by these two methods were of good quality for mapping distribution model of soil classes over the study area.
基金Supported by the National Natural Science Foundation of China(50975141)the Aviation Science Fund(20091652018,2010352005)the National Science and Technology Major Project of the Ministry of Science and Technology of China(2012ZX04003031-4)
文摘To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital drill holes in aluminum alloy 6061.Firstly,four cutting control parameters(tool rotation speed,tool revolution speed,axial feeding pitch and tool revolution radius)and affecting cutting forces are identified after orbital drilling kinematics analysis.Secondly,hybrid level orthogonal experiment method is utilized in modeling experiment.By nonlinear regression analysis,two quadratic prediction models for axial and radial forces are established,where the above four control parameters are used as input variables.Then,model accuracy and cutting control parameters are analyzed.Upon axial and radial forces models,two optimal combinations of cutting control parameters are obtained for processing a13mm hole,corresponding to the minimum axial force and the radial force respectively.Finally,each optimal combination is applied in verification experiment.The verification experiment results of cutting force are in good agreement with prediction model,which confirms accracy of the research method in practical production.
文摘Settlement prediction of geosynthetic-reinforced soil(GRS)abutments under service loading conditions is an arduous and challenging task for practicing geotechnical/civil engineers.Hence,in this paper,a novel hybrid artificial intelligence(AI)-based model was developed by the combination of artificial neural network(ANN)and Harris hawks’optimisation(HHO),that is,ANN-HHO,to predict the settlement of the GRS abutments.Five other robust intelligent models such as support vector regression(SVR),Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimisation regression(SMOR),and least-median square regression(LMSR)were constructed and compared to the ANN-HHO model.The predictive strength,relalibility and robustness of the model were evaluated based on rigorous statistical testing,ranking criteria,multi-criteria approach,uncertainity analysis and sensitivity analysis(SA).Moreover,the predictive veracity of the model was also substantiated against several large-scale independent experimental studies on GRS abutments reported in the scientific literature.The acquired findings demonstrated that the ANN-HHO model predicted the settlement of GRS abutments with reasonable accuracy and yielded superior performance in comparison to counterpart models.Therefore,it becomes one of predictive tools employed by geotechnical/civil engineers in preliminary decision-making when investigating the in-service performance of GRS abutments.Finally,the model has been converted into a simple mathematical formulation for easy hand calculations,and it is proved cost-effective and less time-consuming in comparison to experimental tests and numerical simulations.
基金Supported by"Academic Backbone"Project of Northeast Agricultural University(15XG26)the National High-level Talents Special Support Program of China
文摘Predictive microbiology was utilized to model Staphylococcus aureus (S. aureus) growth and staphylococcal enterotoxin A (SEA) production in milk in this study. The modifed logistic model, modifed Gompertz model and Baranyi model were applied to model growth data of S. aureus between 15℃ and 37℃. Model comparisons indicated that Baranyi model described the growth data more accurately than two others with a mean square error of 0.0129. Growth rates generated from Baranyi model matched the observed ones with a bias factor of 0.999 and an accuracy factor of 1.01, and ft a square root model with respect to temperature; other two modifed models both overestimated the observed ones. SEA amount began to be detected when the cell number reached106.4 cfu ? mL-1, and showed the linear correlation with time. Besides, the rate of SEA production ftted an exponential relationship as a function of temperature. Predictions based on the study could be applied to indicate possible growth of S. aureus and prevent the occurrence of staphylococcal food poisoning.
基金Financial support from the National Key R&D Program of China(No.2017YFB0601805)。
文摘Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(WFGD)system is proposed which provides a more flexible framework of optimal control and decision-making compared with PID scheme.At first,a mathematical model of the FGD process is deduced which is suitable for NMPC structure.To equipoise the model’s accuracy and conciseness,the wet limestone FGD system is separated into several modules.Based on the conservation laws,a model with reasonable simplification is developed to describe dynamics of different modules for the purpose of controller design.Then,by addressing economic objectives directly into the NMPC scheme,the NMPC controller can minimize economic cost and track the set-point simultaneously.The accuracy of model is validated by the field data of a 1000 MW thermal power plant in Henan Province,China.The simulation results show that the NMPC strategy improves the economic performance and ensures the emission requirement at the same time.In the meantime,the control scheme satisfies the multiobjective control requirements under complex operation conditions(e.g.,boiler load fluctuation and set point variation).The mathematical model and NMPC structure provides the basic work for the future development of advanced optimized control algorithms in the wet limestone FGD systems.
文摘There has been evidence of crime in the US since colonization. In this article, we analyze the crime statistics of San Francisco and its resolution of crime recorded from January to September of the year 2018. We define resolution of crime as a target variable and study its relationship with other variables. We make several classification models to predict resolution of crime using several data mining techniques and suggest the best model for predicting resolution.
基金Supported by the National Center for Advancing Translational Sciences,No.UL1 TR002377.
文摘Artificial intelligence(AI)and digital twin models of various systems have long been used in industry to test products quickly and efficiently.Use of digital twins in clinical medicine caught attention with the development of Archimedes,an AI model of diabetes,in 2003.More recently,AI models have been applied to the fields of cardiology,endocrinology,and undergraduate medical education.The use of digital twins and AI thus far has focused mainly on chronic disease management,their application in the field of critical care medicine remains much less explored.In neurocritical care,current AI technology focuses on interpreting electroencephalography,monitoring intracranial pressure,and prognosticating outcomes.AI models have been developed to interpret electroencephalograms by helping to annotate the tracings,detecting seizures,and identifying brain activation in unresponsive patients.In this mini-review we describe the challenges and opportunities in building an actionable AI model pertinent to neurocritical care that can be used to educate the newer generation of clinicians and augment clinical decision making.
基金This work was supported by the Fundamental Research Funds for the Central Universities (No.2017JBM003), the National Natural Science Foundation of China (No.61575053, No.61504008), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20130009120042).
文摘Lithium ion battery has typical character of distributed parameter system, and can be described precisely by partial differential equations and multi-physics theory because lithium ion battery is a complicated electrochemical energy storage system. A novel failure prediction modeling method of lithium ion battery based on distributed parameter estimation and single particle model is proposed in this work. Lithium ion concentration in the anode of lithium ion battery is an unmeasurable distributed variable. Failure prediction system can estimate lithium ion concentration online, track the failure residual which is the difference between the estimated value and the ideal value. The precaution signal will be triggered when the failure residual is beyond the predefined failure precaution threshold, and the failure countdown prediction module will be activated. The remaining time of the severe failure threshold can be estimated by the failure countdown prediction module according to the changing rate of the failure residual. A simulation example verifies that lithium ion concentration in the anode of lithium ion battery can be estimated exactly and effectively by the failure prediction model. The precaution signal can be triggered reliably, and the remaining time of the severe failure can be forecasted accurately by the failure countdown prediction module.
文摘Multiple Sclerosis(MS) is a major cause of neurological disability in adults and has an annual cost of approximately $28 billion in the United States. MS is a very complex disorder as demyelination can happen in a variety of locations throughout the brain; therefore, this disease is never the same in two patients making it very hard to predict disease progression. A modeling approach which combines clinical, biological and imaging measures to help treat and fight this disorder is needed. In this paper, I will outline MS as a very heterogeneous disorder, review some potential solutions from the literature, demonstrate the need for a biomarker and will discuss how computational modeling combined with biological, clinical and imaging data can help link disparate observations and decipher complex mechanisms whose solutions are not amenable to simple reductionism.
基金supported by the National Natural Science Foundation of China(81825009,82071505,81901358)the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences(2021-I2MC&T-B-099,2019-I2M-5–006)+2 种基金the Program of Chinese Institute for Brain Research Beijing(2020-NKX-XM-12)the King’s College London-Peking University Health Science Center Joint Institute for Medical Research(BMU2020KCL001,BMU2019LCKXJ012)the National Key R&D Program of China(2021YFF1201103,2016YFC1307000).
文摘Background:Choosing the appropriate antipsychotic drug(APD)treatment for patients with schizophrenia(SCZ)can be challenging,as the treatment response to APD is highly variable and difficult to predict due to the lack of effective biomarkers.Previous studies have indicated the association between treatment response and genetic and epigenetic factors,but no effective biomarkers have been identified.Hence,further research is imperative to enhance precision medicine in SCZ treatment.Methods:Participants with SCZ were recruited from two randomized trials.The discovery cohort was recruited from the CAPOC trial(n=2307)involved 6 weeks of treatment and equally randomized the participants to the Olanzapine,Risperidone,Quetiapine,Aripiprazole,Ziprasidone,and Haloperidol/Perphenazine(subsequently equally assigned to one or the other)groups.The external validation cohort was recruited from the CAPEC trial(n=1379),which involved 8 weeks of treatment and equally randomized the participants to the Olanzapine,Risperidone,and Aripiprazole groups.Additionally,healthy controls(n=275)from the local community were utilized as a genetic/epigenetic reference.The genetic and epigenetic(DNA methylation)risks of SCZ were assessed using the polygenic risk score(PRS)and polymethylation score,respectively.The study also examined the genetic-epigenetic interactions with treatment response through differential methylation analysis,methylation quantitative trait loci,colocalization,and promoteranchored chromatin interaction.Machine learning was used to develop a prediction model for treatment response,which was evaluated for accuracy and clinical benefit using the area under curve(AUC)for classification,R^(2) for regression,and decision curve analysis.Results:Six risk genes for SCZ(LINC01795,DDHD2,SBNO1,KCNG2,SEMA7A,and RUFY1)involved in cortical morphology were identified as having a genetic-epigenetic interaction associated with treatment response.The developed and externally validated prediction model,which incorporated clinical information,PRS,genetic risk score(GRS),and proxy methylation level(proxyDNAm),demonstrated positive benefits for a wide range of patients receiving different APDs,regardless of sex[discovery cohort:AUC=0.874(95%CI 0.867-0.881),R^(2)=0.478;external validation cohort:AUC=0.851(95%CI 0.841-0.861),R^(2)=0.507].Conclusions:This study presents a promising precision medicine approach to evaluate treatment response,which has the potential to aid clinicians in making informed decisions about APD treatment for patients with SCZ.Trial registration Chinese Clinical Trial Registry(https://www.chictr.org.cn/),18 Aug 2009 retrospectively registered:CAPOC-ChiCTR-RNC-09000521(https://www.chictr.org.cn/showproj.aspx?proj=9014),CAPEC-ChiCTRRNC-09000522(https://www.chictr.org.cn/showproj.aspx?proj=9013).
基金supported by grants from the National Nat-ural Science Foundation of China (81570587 and 81700557)the Guangdong Provincial Key Laboratory Construction Projection on Organ Donation and Transplant Immunology (2013A061401007 and 2017B030314018)+3 种基金Guangdong Provincial Natural Science Funds for Major Basic Science Culture Project (2015A030308010)Science and Technology Program of Guangzhou (201704020150)the Natural Science Foundations of Guangdong province (2016A030310141 and 2020A1515010091)Young Teachers Training Project of Sun Yat-sen University (K0401068) and the Guangdong Science and Technology Innovation Strategy (pdjh2022b0010 and pdjh2023a0002)。
文摘Background: Primary non-function(PNF) and early allograft failure(EAF) after liver transplantation(LT) seriously affect patient outcomes. In clinical practice, effective prognostic tools for early identifying recipients at high risk of PNF and EAF were urgently needed. Recently, the Model for Early Allograft Function(MEAF), PNF score by King's College(King-PNF) and Balance-and-Risk-Lactate(BAR-Lac) score were developed to assess the risks of PNF and EAF. This study aimed to externally validate and compare the prognostic performance of these three scores for predicting PNF and EAF. Methods: A retrospective study included 720 patients with primary LT between January 2015 and December 2020. MEAF, King-PNF and BAR-Lac scores were compared using receiver operating characteristic(ROC) and the net reclassification improvement(NRI) and integrated discrimination improvement(IDI) analyses. Results: Of all 720 patients, 28(3.9%) developed PNF and 67(9.3%) developed EAF in 3 months. The overall early allograft dysfunction(EAD) rate was 39.0%. The 3-month patient mortality was 8.6% while 1-year graft-failure-free survival was 89.2%. The median MEAF, King-PNF and BAR-Lac scores were 5.0(3.5–6.3),-2.1(-2.6 to-1.2), and 5.0(2.0–11.0), respectively. For predicting PNF, MEAF and King-PNF scores had excellent area under curves(AUCs) of 0.872 and 0.891, superior to BAR-Lac(AUC = 0.830). The NRI and IDI analyses confirmed that King-PNF score had the best performance in predicting PNF while MEAF served as a better predictor of EAD. The EAF risk curve and 1-year graft-failure-free survival curve showed that King-PNF was superior to MEAF and BAR-Lac scores for stratifying the risk of EAF. Conclusions: MEAF, King-PNF and BAR-Lac were validated as practical and effective risk assessment tools of PNF. King-PNF score outperformed MEAF and BAR-Lac in predicting PNF and EAF within 6 months. BAR-Lac score had a huge advantage in the prediction for PNF without post-transplant variables. Proper use of these scores will help early identify PNF, standardize grading of EAF and reasonably select clinical endpoints in relative studies.
文摘A method of fuzzy modeling based on fuzzy clustering and Kalman filtering was proposed for predicting M s temperature from chemical composition for martensitic stainless steel. The membership degree of each sample was calculated by the fuzzy clustering algorithm. Kalman filtering was used to identify the consequent parameters. Only Grade 95 steel are available for training and validation, and the fuzzy model is valid for the following element concentration ranges (wt%): 0.01<C<0.7; 0<Si<1.0; 0.10<Mn<1.25; 11.5<Cr< 17.5; 0<Ni<2.5; 0<Mo<1.0. Compared with that of several empirical models reported, the accuracy of the fuzzy model was almost 5 times higher than that of the best empirical model. Furthermore, the compositional dependences of Ms were successfully determined and compared with those of the empirical formulae. It was found that the specific element dependences were a function of the overall composition, something could not easily be found using conventional statistics.
基金Knowledge Innovation Project of CAS No.KZCX1-10-04
文摘Sources of uncertainty or error that arise in attempting to scale up the results of laboratory-scale sediment transport studies for predictive modeling of geomorphic systems include: (i) model imperfection, (ii) omission of important processes, (iii) lack of knowledge of initial conditions, (iv) sensitivity to initial conditions, (v) unresolved heterogeneity, (vi) occurrence of external forcing, and (vii) inapplicability of the factor of safety concept. Sources of uncertainty that are unimportant or that can be controlled at small scales and over short time scales become important in large-scale applications and over long time scales. Control and repeatability, hallmarks of laboratory-scale experiments, are usually lacking at the large scales characteristic of geomorphology. Heterogeneity is an important concomitant of size, and tends to make large systems unique. Uniqueness implies that prediction cannot be based upon first-principles quantitative modeling alone, but must be a function of system history as well. Periodic data collection, feedback, and model updating are essential where site-specific prediction is required.
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.RS2022-00167197Development of Intelligent 5G/6G Infrastructure Technology for the Smart City)+2 种基金in part by the National Research Foundation of Korea(NRF),Ministry of Education,through Basic Science Research Program under Grant NRF-2020R1I1A3066543in part by BK21 FOUR(Fostering Outstanding Universities for Research)under Grant 5199990914048in part by the Soonchunhyang University Research Fund.
文摘Intelligent healthcare networks represent a significant component in digital applications,where the requirements hold within quality-of-service(QoS)reliability and safeguarding privacy.This paper addresses these requirements through the integration of enabler paradigms,including federated learning(FL),cloud/edge computing,softwaredefined/virtualized networking infrastructure,and converged prediction algorithms.The study focuses on achieving reliability and efficiency in real-time prediction models,which depend on the interaction flows and network topology.In response to these challenges,we introduce a modified version of federated logistic regression(FLR)that takes into account convergence latencies and the accuracy of the final FL model within healthcare networks.To establish the FLR framework for mission-critical healthcare applications,we provide a comprehensive workflow in this paper,introducing framework setup,iterative round communications,and model evaluation/deployment.Our optimization process delves into the formulation of loss functions and gradients within the domain of federated optimization,which concludes with the generation of service experience batches for model deployment.To assess the practicality of our approach,we conducted experiments using a hypertension prediction model with data sourced from the 2019 annual dataset(Version 2.0.1)of the Korea Medical Panel Survey.Performance metrics,including end-to-end execution delays,model drop/delivery ratios,and final model accuracies,are captured and compared between the proposed FLR framework and other baseline schemes.Our study offers an FLR framework setup for the enhancement of real-time prediction modeling within intelligent healthcare networks,addressing the critical demands of QoS reliability and privacy preservation.
文摘BACKGROUND Study on influencing factors of gastric retention before endoscopic retrograde cholangiopancreatography(ERCP)background:With the wide application of ERCP,the risk of preoperative gastric retention affects the smooth progress of the operation.The study found that female,biliary and pancreatic malignant tumor,digestive tract obstruction and other factors are closely related to gastric retention,so the establishment of predictive model is very important to reduce the risk of operation.METHODS A retrospective analysis was conducted on 190 patients admitted to our hospital for ERCP preparation between January 2020 and February 2024.Patient baseline clinical data were collected using an electronic medical record system.Patients were randomly matched in a 1:4 ratio with data from 190 patients during the same period to establish a validation group(n=38)and a modeling group(n=152).Patients in the modeling group were divided into the gastric retention group(n=52)and non-gastric retention group(n=100)based on whether gastric retention occurred preoperatively.General data of patients in the validation group and identify factors influencing preoperative gastric retention in ERCP patients.A predictive model for preoperative gastric retention in ERCP patients was constructed,and calibration curves were used for validation.The receiver operating characteristic(ROC)curve was analyzed to evaluate the predictive value of the model.RESULTS We found no statistically significant difference in general data between the validation group and modeling group(P>0.05).The comparison of age,body mass index,hypertension,and diabetes between the two groups showed no statistically significant difference(P>0.05).However,we noted statistically significant differences in gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction between the two groups(P<0.05).Mul-tivariate logistic regression analysis showed that gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction were independent factors influencing preoperative gastric retention in ERCP patients(P<0.05).The results of logistic regression analysis revealed that gender,primary disease,jaundice,opioid use,and gastroin-testinal obstruction were included in the predictive model for preoperative gastric retention in ERCP patients.The calibration curves in the training set and validation set showed a slope close to 1,indicating good consistency between the predicted risk and actual risk.The ROC analysis results showed that the area under the curve(AUC)of the predictive model for preoperative gastric retention in ERCP patients in the training set was 0.901 with a standard error of 0.023(95%CI:0.8264-0.9567),and the optimal cutoff value was 0.71,with a sensitivity of 87.5 and specificity of 84.2.In the validation set,the AUC of the predictive model was 0.842 with a standard error of 0.013(95%CI:0.8061-0.9216),and the optimal cutoff value was 0.56,with a sensitivity of 56.2 and specificity of 100.0.CONCLUSION Gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction are factors influencing preoperative gastric retention in ERCP patients.A predictive model established based on these factors has high predictive value.
文摘BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages that cannot be treated by radical surgery and which are accompanied by complications such as bodily pain and bone metastasis.Therefore,attention should be given to the mental health status of PC patients as well as physical adverse events in the course of clinical treatment.AIM To analyze the risk factors leading to anxiety and depression in PC patients after castration and build a risk prediction model.METHODS A retrospective analysis was performed on the data of 120 PC cases treated in Xi'an People's Hospital between January 2019 and January 2022.The patient cohort was divided into a training group(n=84)and a validation group(n=36)at a ratio of 7:3.The patients’anxiety symptoms and depression levels were assessed 2 wk after surgery with the Self-Rating Anxiety Scale(SAS)and the Selfrating Depression Scale(SDS),respectively.Logistic regression was used to analyze the risk factors affecting negative mood,and a risk prediction model was constructed.RESULTS In the training group,35 patients and 37 patients had an SAS score and an SDS score greater than or equal to 50,respectively.Based on the scores,we further subclassified patients into two groups:a bad mood group(n=35)and an emotional stability group(n=49).Multivariate logistic regression analysis showed that marital status,castration scheme,and postoperative Visual Analogue Scale(VAS)score were independent risk factors affecting a patient's bad mood(P<0.05).In the training and validation groups,patients with adverse emotions exhibited significantly higher risk scores than emotionally stable patients(P<0.0001).The area under the curve(AUC)of the risk prediction model for predicting bad mood in the training group was 0.743,the specificity was 70.96%,and the sensitivity was 66.03%,while in the validation group,the AUC,specificity,and sensitivity were 0.755,66.67%,and 76.19%,respectively.The Hosmer-Lemeshow test showed aχ^(2) of 4.2856,a P value of 0.830,and a C-index of 0.773(0.692-0.854).The calibration curve revealed that the predicted curve was basically consistent with the actual curve,and the calibration curve showed that the prediction model had good discrimination and accuracy.Decision curve analysis showed that the model had a high net profit.CONCLUSION In PC patients,marital status,castration scheme,and postoperative pain(VAS)score are important factors affecting postoperative anxiety and depression.The logistic regression model can be used to successfully predict the risk of adverse psychological emotions.
文摘Oil wells on the North Slope of Alaska pass through deep deposits of permafrost. The heat transferred during their operation causes localized thawing, resulting in ground subsidence adjacent to the well casings. This subsidence has a damaging effect, causing the casings to compress, deform, and potentially fail. This paper presents the results of a laboratory study of the thaw consolidation strain of deep permafrost and its predictive modeling. Tests were performed to determine strains due to thaw and post-thaw loading, as well as soil index properties. Results, together with data from an earlier testing program, were used to produce empirical models for predicting strains and ground subsidence. Four distinct strain cases were analyzed with three models by multiple regression analyses, and the best-fitting model was selected for each case. Models were further compared in a ground subsidence prediction using a shared subsurface profile. Laboratory results indicate that strains due to thaw and post-thaw testing in deep core permafrost are insensitive to depth and are more strongly influenced by stress redistributions and the presence of ice lenses and inclusions. Modeling results show that the most statistically valid and useful models were those constructed using moisture content, porosity, and degree of saturation. The applicability of these models was validated by comparison with results from Finite Element modeling.