Background: Primary non-function(PNF) and early allograft failure(EAF) after liver transplantation(LT) seriously affect patient outcomes. In clinical practice, effective prognostic tools for early identifying recipien...Background: Primary non-function(PNF) and early allograft failure(EAF) after liver transplantation(LT) seriously affect patient outcomes. In clinical practice, effective prognostic tools for early identifying recipients at high risk of PNF and EAF were urgently needed. Recently, the Model for Early Allograft Function(MEAF), PNF score by King's College(King-PNF) and Balance-and-Risk-Lactate(BAR-Lac) score were developed to assess the risks of PNF and EAF. This study aimed to externally validate and compare the prognostic performance of these three scores for predicting PNF and EAF. Methods: A retrospective study included 720 patients with primary LT between January 2015 and December 2020. MEAF, King-PNF and BAR-Lac scores were compared using receiver operating characteristic(ROC) and the net reclassification improvement(NRI) and integrated discrimination improvement(IDI) analyses. Results: Of all 720 patients, 28(3.9%) developed PNF and 67(9.3%) developed EAF in 3 months. The overall early allograft dysfunction(EAD) rate was 39.0%. The 3-month patient mortality was 8.6% while 1-year graft-failure-free survival was 89.2%. The median MEAF, King-PNF and BAR-Lac scores were 5.0(3.5–6.3),-2.1(-2.6 to-1.2), and 5.0(2.0–11.0), respectively. For predicting PNF, MEAF and King-PNF scores had excellent area under curves(AUCs) of 0.872 and 0.891, superior to BAR-Lac(AUC = 0.830). The NRI and IDI analyses confirmed that King-PNF score had the best performance in predicting PNF while MEAF served as a better predictor of EAD. The EAF risk curve and 1-year graft-failure-free survival curve showed that King-PNF was superior to MEAF and BAR-Lac scores for stratifying the risk of EAF. Conclusions: MEAF, King-PNF and BAR-Lac were validated as practical and effective risk assessment tools of PNF. King-PNF score outperformed MEAF and BAR-Lac in predicting PNF and EAF within 6 months. BAR-Lac score had a huge advantage in the prediction for PNF without post-transplant variables. Proper use of these scores will help early identify PNF, standardize grading of EAF and reasonably select clinical endpoints in relative studies.展开更多
BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages ...BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages that cannot be treated by radical surgery and which are accompanied by complications such as bodily pain and bone metastasis.Therefore,attention should be given to the mental health status of PC patients as well as physical adverse events in the course of clinical treatment.AIM To analyze the risk factors leading to anxiety and depression in PC patients after castration and build a risk prediction model.METHODS A retrospective analysis was performed on the data of 120 PC cases treated in Xi'an People's Hospital between January 2019 and January 2022.The patient cohort was divided into a training group(n=84)and a validation group(n=36)at a ratio of 7:3.The patients’anxiety symptoms and depression levels were assessed 2 wk after surgery with the Self-Rating Anxiety Scale(SAS)and the Selfrating Depression Scale(SDS),respectively.Logistic regression was used to analyze the risk factors affecting negative mood,and a risk prediction model was constructed.RESULTS In the training group,35 patients and 37 patients had an SAS score and an SDS score greater than or equal to 50,respectively.Based on the scores,we further subclassified patients into two groups:a bad mood group(n=35)and an emotional stability group(n=49).Multivariate logistic regression analysis showed that marital status,castration scheme,and postoperative Visual Analogue Scale(VAS)score were independent risk factors affecting a patient's bad mood(P<0.05).In the training and validation groups,patients with adverse emotions exhibited significantly higher risk scores than emotionally stable patients(P<0.0001).The area under the curve(AUC)of the risk prediction model for predicting bad mood in the training group was 0.743,the specificity was 70.96%,and the sensitivity was 66.03%,while in the validation group,the AUC,specificity,and sensitivity were 0.755,66.67%,and 76.19%,respectively.The Hosmer-Lemeshow test showed aχ^(2) of 4.2856,a P value of 0.830,and a C-index of 0.773(0.692-0.854).The calibration curve revealed that the predicted curve was basically consistent with the actual curve,and the calibration curve showed that the prediction model had good discrimination and accuracy.Decision curve analysis showed that the model had a high net profit.CONCLUSION In PC patients,marital status,castration scheme,and postoperative pain(VAS)score are important factors affecting postoperative anxiety and depression.The logistic regression model can be used to successfully predict the risk of adverse psychological emotions.展开更多
Suicide has become a critical concern,necessitating the development of effective preventative strategies.Social media platforms offer a valuable resource for identifying signs of suicidal ideation.Despite progress in ...Suicide has become a critical concern,necessitating the development of effective preventative strategies.Social media platforms offer a valuable resource for identifying signs of suicidal ideation.Despite progress in detecting suicidal ideation on social media,accurately identifying individuals who express suicidal thoughts less openly or infrequently poses a significant challenge.To tackle this,we have developed a dataset focused on Chinese suicide narratives from Weibo’s Tree Hole feature and introduced an ensemble model named Text Convolutional Neural Network based on Social Network relationships(TCNN-SN).This model enhances predictive performance by leveraging social network relationship features and applying correction factors within a weighted linear fusion framework.It is specifically designed to identify key individuals who can help uncover hidden suicidal users and clusters.Our model,assessed using the bespoke dataset and benchmarked against alternative classification approaches,demonstrates superior accuracy,F1-score and AUC metrics,achieving 88.57%,88.75%and 94.25%,respectively,outperforming traditional TextCNN models by 12.18%,10.84%and 10.85%.We assert that our methodology offers a significant advancement in the predictive identification of individuals at risk,thereby contributing to the prevention and reduction of suicide incidences.展开更多
Due to the complexity and variability of carbonate formation leakage zones, lost circulation prediction and control is one of the major challenges of carbonate drilling. It raises well-control risks and production exp...Due to the complexity and variability of carbonate formation leakage zones, lost circulation prediction and control is one of the major challenges of carbonate drilling. It raises well-control risks and production expenses. This research utilizes the H oilfield as an example, employs seismic features to analyze mud loss prediction, and produces a complete set of pre-drilling mud loss prediction solutions. Firstly, 16seismic attributes are calculated based on the post-stack seismic data, and the mud loss rate per unit footage is specified. The sample set is constructed by extracting each attribute from the seismic trace surrounding 15 typical wells, with a ratio of 8:2 between the training set and the test set. With the calibration results for mud loss rate per unit footage, the nonlinear mapping relationship between seismic attributes and mud loss rate per unit size is established using the mixed density network model.Then, the influence of the number of sub-Gausses and the uncertainty coefficient on the model's prediction is evaluated. Finally, the model is used in conjunction with downhole drilling conditions to assess the risk of mud loss in various layers and along the wellbore trajectory. The study demonstrates that the mean relative errors of the model for training data and test data are 6.9% and 7.5%, respectively, and that R2is 90% and 88%, respectively, for training data and test data. The accuracy and efficacy of mud loss prediction may be greatly enhanced by combining 16 seismic attributes with the mud loss rate per unit footage and applying machine learning methods. The mud loss prediction model based on the MDN model can not only predict the mud loss rate but also objectively evaluate the prediction based on the quality of the data and the model.展开更多
BACKGROUND Hypothermia during laparoscopic surgery in patients with multiple trauma is a significant concern owing to its potential complications.Machine learning models offer a promising approach to predict the occur...BACKGROUND Hypothermia during laparoscopic surgery in patients with multiple trauma is a significant concern owing to its potential complications.Machine learning models offer a promising approach to predict the occurrence of intraoperative hypothermia.AIM To investigate the value of machine learning model to predict hypothermia during laparoscopic surgery in patients with multiple trauma.METHODS This retrospective study enrolled 220 patients who were admitted with multiple injuries between June 2018 and December 2023.Of these,154 patients were allocated to a training set and the remaining 66 were allocated to a validation set in a 7:3 ratio.In the training set,53 cases experienced intraoperative hypothermia and 101 did not.Logistic regression analysis was used to construct a predictive model of intraoperative hypothermia in patients with polytrauma undergoing laparoscopic surgery.The area under the curve(AUC),sensitivity,and specificity were calculated.RESULTS Comparison of the hypothermia and non-hypothermia groups found significant differences in sex,age,baseline temperature,intraoperative temperature,duration of anesthesia,duration of surgery,intraoperative fluid infusion,crystalloid infusion,colloid infusion,and pneumoperitoneum volume(P<0.05).Differences between other characteristics were not significant(P>0.05).The results of the logistic regression analysis showed that age,baseline temperature,intraoperative temperature,duration of anesthesia,and duration of surgery were independent influencing factors for intraoperative hypothermia during laparoscopic surgery(P<0.05).Calibration curve analysis showed good consistency between the predicted occurrence of intraoperative hypothermia and the actual occurrence(P>0.05).The predictive model had AUCs of 0.850 and 0.829 for the training and validation sets,respectively.CONCLUSION Machine learning effectively predicted intraoperative hypothermia in polytrauma patients undergoing laparoscopic surgery,which improved surgical safety and patient recovery.展开更多
BACKGROUND Acute myocardial infarction(AMI)is a severe cardiovascular disease caused by the blockage of coronary arteries that leads to ischemic necrosis of the myocardium.Timely medical contact is critical for succes...BACKGROUND Acute myocardial infarction(AMI)is a severe cardiovascular disease caused by the blockage of coronary arteries that leads to ischemic necrosis of the myocardium.Timely medical contact is critical for successful AMI treatment,and delays increase the risk of death for patients.Pre-hospital delay time(PDT)is a significant challenge for reducing treatment times,as identifying high-risk patients with AMI remains difficult.This study aims to construct a risk prediction model to identify high-risk patients and develop targeted strategies for effective and prompt care,ultimately reducing PDT and improving treatment outcomes.AIM To construct a nomogram model for forecasting pre-hospital delay(PHD)likelihood in patients with AMI and to assess the precision of the nomogram model in predicting PHD risk.METHODS A retrospective cohort design was employed to investigate predictive factors for PHD in patients with AMI diagnosed between January 2022 and September 2022.The study included 252 patients,with 180 randomly assigned to the development group and the remaining 72 to the validation group in a 7:3 ratio.Independent risk factors influencing PHD were identified in the development group,leading to the establishment of a nomogram model for predicting PHD in patients with AMI.The model's predictive performance was evaluated using the receiver operating characteristic curve in both the development and validation groups.RESULTS Independent risk factors for PHD in patients with AMI included living alone,hyperlipidemia,age,diabetes mellitus,and digestive system diseases(P<0.05).A characteristic curve analysis indicated area under the receiver operating characteristic curve values of 0.787(95%confidence interval:0.716–0.858)and 0.770(95%confidence interval:0.660-0.879)in the development and validation groups,respectively,demonstrating the model's good discriminatory ability.The Hosmer–Lemeshow goodness-of-fit test revealed no statistically significant disparity between the anticipated and observed incidence of PHD in both development and validation cohorts(P>0.05),indicating satisfactory model calibration.CONCLUSION The nomogram model,developed with independent risk factors,accurately forecasts PHD likelihood in AMI individuals,enabling efficient identification of PHD risk in these patients.展开更多
BACKGROUND Post-burn anxiety and depression affect considerably the quality of life and recovery of patients;however,limited research has demonstrated risk factors associated with the development of these conditions.A...BACKGROUND Post-burn anxiety and depression affect considerably the quality of life and recovery of patients;however,limited research has demonstrated risk factors associated with the development of these conditions.AIM To predict the risk of developing post-burn anxiety and depression in patients with non-mild burns using a nomogram model.METHODS We enrolled 675 patients with burns who were admitted to The Second Affiliated Hospital,Hengyang Medical School,University of South China between January 2019 and January 2023 and met the inclusion criteria.These patients were randomly divided into development(n=450)and validation(n=225)sets in a 2:1 ratio.Univariate and multivariate logistic regression analyses were conducted to identify the risk factors associated with post-burn anxiety and depression dia-gnoses,and a nomogram model was constructed.RESULTS Female sex,age<33 years,unmarried status,burn area≥30%,and burns on the head,face,and neck were independent risk factors for developing post-burn anxiety and depression in patients with non-mild burns.The nomogram model demonstrated predictive accuracies of 0.937 and 0.984 for anxiety and 0.884 and 0.923 for depression in the development and validation sets,respectively,and good predictive per-formance.Calibration and decision curve analyses confirmed the clinical utility of the nomogram.CONCLUSION The nomogram model predicted the risk of post-burn anxiety and depression in patients with non-mild burns,facilitating the early identification of high-risk patients for intervention and treatment.展开更多
BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is a cause of acute-onchronic liver failure(ACLF).AIM To investigate the risk factors of ACLF within 1 year after TIPS in patients with cirrhosis and const...BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is a cause of acute-onchronic liver failure(ACLF).AIM To investigate the risk factors of ACLF within 1 year after TIPS in patients with cirrhosis and construct a prediction model.METHODS In total,379 patients with decompensated cirrhosis treated with TIPS at Nanjing Drum Tower Hospital from 2017 to 2020 were selected as the training cohort,and 123 patients from Nanfang Hospital were included in the external validation cohort.Univariate and multivariate logistic regression analyses were performed to identify independent predictors.The prediction model was established based on the Akaike information criterion.Internal and external validation were conducted to assess the performance of the model.RESULTS Age and total bilirubin(TBil)were independent risk factors for the incidence of ACLF within 1 year after TIPS.We developed a prediction model comprising age,TBil,and serum sodium,which demonstrated good discrimination and calibration in both the training cohort and the external validation cohort.CONCLUSION Age and TBil are independent risk factors for the incidence of ACLF within 1 year after TIPS in patients with decompensated cirrhosis.Our model showed satisfying predictive value.展开更多
In this editorial,we comment on the article by Chen et al.We specifically focus on the risk factors,prognostic factors,and management of brain metastasis(BM)in breast cancer(BC).BC is the second most common cancer to ...In this editorial,we comment on the article by Chen et al.We specifically focus on the risk factors,prognostic factors,and management of brain metastasis(BM)in breast cancer(BC).BC is the second most common cancer to have BM after lung cancer.Independent risk factors for BM in BC are:HER-2 positive BC,triplenegative BC,and germline BRCA mutation.Other factors associated with BM are lung metastasis,age less than 40 years,and African and American ancestry.Even though risk factors associated with BM in BC are elucidated,there is a lack of data on predictive models for BM in BC.Few studies have been made to formulate predictive models or nomograms to address this issue,where age,grade of tumor,HER-2 receptor status,and number of metastatic sites(1 vs>1)were predictive of BM in metastatic BC.However,none have been used in clinical practice.National Comprehensive Cancer Network recommends screening of BM in advanced BC only when the patient is symptomatic or suspicious of central nervous system symptoms;routine screening for BM in BC is not recommended in the guidelines.BM decreases the quality of life and will have a significant psychological impact.Further studies are required for designing validated nomograms or predictive models for BM in BC;these models can be used in the future to develop treatment approaches to prevent BM,which improves the quality of life and overall survival.展开更多
Objective The study aims to predict 10-year cardiovascular disease(CVD)risk and explore its association with sleep duration among Chinese urban adults.Methods We analyzed part of the baseline data of a cohort that rec...Objective The study aims to predict 10-year cardiovascular disease(CVD)risk and explore its association with sleep duration among Chinese urban adults.Methods We analyzed part of the baseline data of a cohort that recruited adults for health screening by cluster sampling.The simplified Pittsburgh Sleep Quality Index(PSQI)and Framingham 10-year risk score(FRS)were used to measure sleep duration and CVD risk.Demographic characteristics,personal history of chronic diseases,lifestyle factors were collected using a questionnaire.Height,weight,total cholesterol(TC),and high-density lipoprotein cholesterol(HDL-C)were also measured.Multiple logistic regression models were performed to explore the association of sleep duration with the predicted CVD risk.Results We included 31,135 participants(median age 44 years,53.02%males)free of CVD,cerebral stroke,and not taking lipid-lowering agents.Overall,14.05%,and 25.55%of participants were at medium and high predicted CVD risk,respectively.Short sleep was independently associated with increased odds of medium to high risk of predicted 10-year CVD among males(OR=1.10;95%CI:1.01–1.19)and increased odds of medium to high and high risk of predicted 10-year CVD among females(OR=1.23;95%CI:1.08–1.40;OR=1.27;95%CI:1.11–1.44).In contrast,long sleep had no association with cardiovascular risk.Conclusion A substantial number of adults free of CVD were at high 10-year CVD risk.Short sleep was associated with increased odds of predicted CVD risk.展开更多
BACKGROUND Surgical resection is the primary treatment for hepatocellular carcinoma(HCC).However,studies indicate that nearly 70%of patients experience HCC recurrence within five years following hepatectomy.The earlie...BACKGROUND Surgical resection is the primary treatment for hepatocellular carcinoma(HCC).However,studies indicate that nearly 70%of patients experience HCC recurrence within five years following hepatectomy.The earlier the recurrence,the worse the prognosis.Current studies on postoperative recurrence primarily rely on postoperative pathology and patient clinical data,which are lagging.Hence,developing a new pre-operative prediction model for postoperative recurrence is crucial for guiding individualized treatment of HCC patients and enhancing their prognosis.AIM To identify key variables in pre-operative clinical and imaging data using machine learning algorithms to construct multiple risk prediction models for early postoperative recurrence of HCC.METHODS The demographic and clinical data of 371 HCC patients were collected for this retrospective study.These data were randomly divided into training and test sets at a ratio of 8:2.The training set was analyzed,and key feature variables with predictive value for early HCC recurrence were selected to construct six different machine learning prediction models.Each model was evaluated,and the bestperforming model was selected for interpreting the importance of each variable.Finally,an online calculator based on the model was generated for daily clinical practice.RESULTS Following machine learning analysis,eight key feature variables(age,intratumoral arteries,alpha-fetoprotein,preoperative blood glucose,number of tumors,glucose-to-lymphocyte ratio,liver cirrhosis,and pre-operative platelets)were selected to construct six different prediction models.The XGBoost model outperformed other models,with the area under the receiver operating characteristic curve in the training,validation,and test datasets being 0.993(95%confidence interval:0.982-1.000),0.734(0.601-0.867),and 0.706(0.585-0.827),respectively.Calibration curve and decision curve analysis indicated that the XGBoost model also had good predictive performance and clinical application value.CONCLUSION The XGBoost model exhibits superior performance and is a reliable tool for predicting early postoperative HCC recurrence.This model may guide surgical strategies and postoperative individualized medicine.展开更多
Objective It is difficult to predict fulminant myocarditis at an early stage in the emergency department.The objective of this study was to construct and validate a simple prediction model for the early identification...Objective It is difficult to predict fulminant myocarditis at an early stage in the emergency department.The objective of this study was to construct and validate a simple prediction model for the early identification of fulminant myocarditis.Methods A total of 61 patients with fulminant myocarditis and 160 patients with acute myocarditis were enrolled in the training and internal validation cohorts.LASSO regression and multivariate logistic regression were selected to develop the prediction model.The selection of the model was based on overall performance and simplicity.A nomogram based on the optimal model was built,and its clinical usefulness was evaluated by decision curve analysis.The predictive model was further validated in an external validation group.Results The resulting prediction model was based on 4 factors:systolic blood pressure,troponin I,left ventricular ejection fraction,and ventricular wall motion abnormality.The Brier scores of the final model were 0.078 in the training data set and 0.061 in the internal testing data set,respectively.The C-indexes of the training data set and the testing data set were 0.952 and 0.968,respectively.Decision curve analysis showed that the nomogram model developed based on the 4 predictors above had a positive net benefit for predicting probability thresholds.In the external validation cohort,the model also showed good performance(Brier score=0.007,and C-index=0.989).Conclusion We developed and validated an early prediction model consisting of 4 clinical factors(systolic blood pressure,troponin I,left ventricular ejection fraction,and ventricular wall motion abnormality)to identify potential fulminant myocarditis patients in the emergency department.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is difficult to diagnose with poor therapeutic effect,high recurrence rate and has a low survival rate.The survival of patients with HCC is closely related to the stage of diagn...BACKGROUND Hepatocellular carcinoma(HCC)is difficult to diagnose with poor therapeutic effect,high recurrence rate and has a low survival rate.The survival of patients with HCC is closely related to the stage of diagnosis.At present,no specific serolo-gical indicator or method to predict HCC,early diagnosis of HCC remains a challenge,especially in China,where the situation is more severe.AIM To identify risk factors associated with HCC and establish a risk prediction model based on clinical characteristics and liver-related indicators.METHODS The clinical data of patients in the Affiliated Hospital of North Sichuan Medical College from 2016 to 2020 were collected,using a retrospective study method.The results of needle biopsy or surgical pathology were used as the grouping criteria for the experimental group and the control group in this study.Based on the time of admission,the cases were divided into training cohort(n=1739)and validation cohort(n=467).Using HCC as a dependent variable,the research indicators were incorporated into logistic univariate and multivariate analysis.An HCC risk prediction model,which was called NSMC-HCC model,was then established in training cohort and verified in validation cohort.RESULTS Logistic univariate analysis showed that,gender,age,alpha-fetoprotein,and protein induced by vitamin K absence or antagonist-II,gamma-glutamyl transferase,aspartate aminotransferase and hepatitis B surface antigen were risk factors for HCC,alanine aminotransferase,total bilirubin and total bile acid were protective factors for HCC.When the cut-off value of the NSMC-HCC model joint prediction was 0.22,the area under receiver operating characteristic curve(AUC)of NSMC-HCC model in HCC diagnosis was 0.960,with sensitivity 94.40%and specificity 95.35%in training cohort,and AUC was 0.966,with sensitivity 90.00%and specificity 94.20%in validation cohort.In early-stage HCC diagnosis,the AUC of NSMC-HCC model was 0.946,with sensitivity 85.93%and specificity 93.62%in training cohort,and AUC was 0.947,with sensitivity 89.10%and specificity 98.49%in validation cohort.CONCLUSION The newly NSMC-HCC model was an effective risk prediction model in HCC and early-stage HCC diagnosis.展开更多
Introduction:Acute type A aortic dissection(ATAAD)is a catastrophic disease with fatal outcomes.Malperfusion syndrome(MPS)is a serious complication of ATAAD,with an incidence of 20–40%.Many studies have shown that MP...Introduction:Acute type A aortic dissection(ATAAD)is a catastrophic disease with fatal outcomes.Malperfusion syndrome(MPS)is a serious complication of ATAAD,with an incidence of 20–40%.Many studies have shown that MPS is the main risk factor for poor ATAAD prognosis.However,a risk scoring system for ATAAD based on MPS is lacking.Here,we designed a risk scoring system for ATAAD to assess mortality through quantitative assessment of relevant organ malperfusion and subsequently develop rational treatment strategies.Methods and analysis:This was a prospective observational study.Patients’perioperative clinical data were col-lected to establish a database of ATAAD(N≥3000)and determine whether these patients had malperfusion complica-tions.The Anzhen risk scoring system was established on the basis of organ malperfusion by using a random forest survival model and a logistics model.The better method was then chosen to establish a revised risk scoring system.Ethics and dissemination:This study received ethical approval from the Ethics Committees of Beijing Anzhen Hospital,Capital Medical University(KS2019034-1).Patient consent was waived because biological samples were not collected,and no patient rights were violated.Findings will be disseminated at scientific conferences and in peer-reviewed publications.展开更多
BACKGROUND Urinary sepsis is frequently seen in patients with diabetes mellitus(DM)complicated with upper urinary tract calculi(UUTCs).Currently,the known risk factors of urinary sepsis are not uniform.AIM To analyze ...BACKGROUND Urinary sepsis is frequently seen in patients with diabetes mellitus(DM)complicated with upper urinary tract calculi(UUTCs).Currently,the known risk factors of urinary sepsis are not uniform.AIM To analyze the risk factors of concurrent urinary sepsis in patients with DM complicated with UUTCs by logistic regression.METHODS We retrospectively analyzed 384 patients with DM complicated with UUTCs treated in People’s Hospital of Jincheng between February 2018 and May 2022.The patients were screened according to the inclusion and exclusion criteria,and 204 patients were enrolled.The patients were assigned to an occurrence group(n=78)and a nonoccurrence group(n=126).Logistic regression was adopted to analyze the risk factors for urinary sepsis,and a risk prediction model was established.RESULTS Gender,age,history of lumbago and abdominal pain,operation time,urine leukocytes(U-LEU)and urine glucose(U-GLU)were independent risk factors for patients with concurrent urinary sepsis(P<0.05).Risk score=0.794×gender+0.941×age+0.901×history of lumbago and abdominal pain-1.071×operation time+1.972×U-LEU+1.541×U-GLU.The occurrence group had notably higher risk scores than the nonoccurrence group(P<0.0001).The area under the curve of risk score for forecasting concurrent urinary sepsis in patients was 0.801,with specificity of 73.07%,sensitivity of 79.36%and Youden index of 52.44%.CONCLUSION Sex,age,history of lumbar and abdominal pain,operation time,ULEU and UGLU are independent risk factors for urogenic sepsis in diabetic patients with UUTC.展开更多
BACKGROUND Colorectal cancer(CRC)is a significant global health issue,and lymph node metastasis(LNM)is a crucial prognostic factor.Accurate prediction of LNM is essential for developing individualized treatment strate...BACKGROUND Colorectal cancer(CRC)is a significant global health issue,and lymph node metastasis(LNM)is a crucial prognostic factor.Accurate prediction of LNM is essential for developing individualized treatment strategies for patients with CRC.However,the prediction of LNM is challenging and depends on various factors such as tumor histology,clinicopathological features,and molecular characteristics.The most reliable method to detect LNM is the histopathological examination of surgically resected specimens;however,this method is invasive,time-consuming,and subject to sampling errors and interobserver variability.AIM To analyze influencing factors and develop and validate a risk prediction model for LNM in CRC based on a large patient queue.METHODS This study retrospectively analyzed 300 patients who underwent CRC surgery at two Peking University Shenzhen hospitals between January and December 2021.A deep learning approach was used to extract features potentially associated with LNM from primary tumor histological images while a logistic regression model was employed to predict LNM in CRC using machine-learning-derived features and clinicopathological variables as predictors.RESULTS The prediction model constructed for LNM in CRC was based on a logistic regression framework that incorporated machine learning-extracted features and clinicopathological variables.The model achieved high accuracy(0.86),sensitivity(0.81),specificity(0.87),positive predictive value(0.66),negative predictive value(0.94),area under the curve for the receiver operating characteristic(0.91),and a low Brier score(0.10).The model showed good agreement between the observed and predicted probabilities of LNM across a range of risk thresholds,indicating good calibration and clinical utility.CONCLUSION The present study successfully developed and validated a potent and effective risk-prediction model for LNM in patients with CRC.This model utilizes machine-learning-derived features extracted from primary tumor histology and clinicopathological variables,demonstrating superior performance and clinical applicability compared to existing models.The study provides new insights into the potential of deep learning to extract valuable information from tumor histology,in turn,improving the prediction of LNM in CRC and facilitate risk stratification and decision-making in clinical practice.展开更多
BACKGROUND Spinal osteoporosis is a prevalent health condition characterized by the thinning of bone tissues in the spine,increasing the risk of fractures.Given its high incidence,especially among older populations,it...BACKGROUND Spinal osteoporosis is a prevalent health condition characterized by the thinning of bone tissues in the spine,increasing the risk of fractures.Given its high incidence,especially among older populations,it is critical to have accurate and effective predictive models for fracture risk.Traditionally,clinicians have relied on a combination of factors such as demographics,clinical attributes,and radiological characteristics to predict fracture risk in these patients.However,these models often lack precision and fail to include all potential risk factors.There is a need for a more comprehensive,statistically robust prediction model that can better identify high-risk individuals for early intervention.AIM To construct and validate a model for forecasting fracture risk in patients with spinal osteoporosis.METHODS The medical records of 80 patients with spinal osteoporosis who were diagnosed and treated between 2019 and 2022 were retrospectively examined.The patients were selected according to strict criteria and categorized into two groups:Those with fractures(n=40)and those without fractures(n=40).Demographics,clinical attributes,biochemical indicators,bone mineral density(BMD),and radiological characteristics were collected and compared.A logistic regression analysis was employed to create an osteoporotic fracture risk-prediction model.The area under the receiver operating characteristic curve(AUROC)was used to evaluate the model’s performance.RESULTS Factors significantly associated with fracture risk included age,sex,body mass index(BMI),smoking history,BMD,vertebral trabecular alterations,and prior vertebral fractures.The final risk-prediction model was developed using the formula:(logit[P]=-3.75+0.04×age-1.15×sex+0.02×BMI+0.83×smoking history+2.25×BMD-1.12×vertebral trabecular alterations+1.83×previous vertebral fractures).The AUROC of the model was 0.93(95%CI:0.88-0.96,P<0.001),indicating strong discriminatory capabilities.CONCLUSION The fracture risk-prediction model,utilizing accessible clinical,biochemical,and radiological information,offered a precise tool for the evaluation of fracture risk in patients with spinal osteoporosis.The model has potential in the identification of high-risk individuals for early intervention and the guidance of appropriate preventive actions to reduce the impact of osteoporosis-related fractures.展开更多
Background: Risk stratification of long-term outcomes for patients undergoing Coronary artery bypass grafting has enormous potential clinical importance. Aim: To develop risk stratification models for predicting long-...Background: Risk stratification of long-term outcomes for patients undergoing Coronary artery bypass grafting has enormous potential clinical importance. Aim: To develop risk stratification models for predicting long-term outcomes following coronary artery bypass graft (CABG) surgery. Methods: We retrospectively revised the electronic medical records of 2330 patients who underwent adult Cardiac surgery between August 2016 and December 2022 at Madinah Cardiac Center, Saudi Arabia. Three hundred patients fulfilled the eligibility criteria of CABG operations with a complete follow-up period of at least 24 months, and data reporting. The collected data included patient demographics, comorbidities, laboratory data, pharmacotherapy, echocardiographic parameters, procedural details, postoperative data, in-hospital outcomes, and follow-up data. Our follow-up was depending on the clinical status (NYHA class), chest pain recurrence, medication dependence and echo follow-up. A univariate analysis was performed between each patient risk factor and the long-term outcome to determine the preoperative, operative, and postoperative factors significantly associated with each long-term outcome. Then a multivariable logistic regression analysis was performed with a stepwise, forward selection procedure. Significant (p < 0.05) risk factors were identified and were used as candidate variables in the development of a multivariable risk prediction model. Results: The incidence of all-cause mortality during hospital admission or follow-up period was 2.3%. Other long-term outcomes included all-cause recurrent hospitalization (9.8%), recurrent chest pain (2.4%), and the need for revascularization by using a stent in 5 (3.0%) patients. Thirteen (4.4%) patients suffered heart failure and they were on the maximum anti-failure medications. The model for predicting all-cause mortality included the preoperative EF ≤ 35% (AOR: 30.757, p = 0.061), the bypass time (AOR: 1.029, p = 0.003), and the duration of ventilation following the operation (AOR: 1.237, p = 0.021). The model for risk stratification of recurrent hospitalization comprised the preoperative EF ≤ 35% (AOR: 6.198, p p = 0.023), low postoperative cardiac output (AOR: 3.622, p = 0.007), and the development of postoperative atrial fibrillation (AOR: 2.787, p = 0.038). Low postoperative cardiac output was the only predictor that significantly contributed to recurrent chest pain (AOR: 11.66, p = 0.004). Finally, the model consisted of low postoperative cardiac output (AOR: 5.976, p < 0.001) and postoperative ventricular fibrillation (AOR: 4.216, p = 0.019) was significantly associated with an increased likelihood of the future need for revascularization using a stent. Conclusions: A risk prediction model was developed in a Saudi cohort for predicting all-cause mortality risk during both hospital admission and the follow-up period of at least 24 months after isolated CABG surgery. A set of models were also developed for predicting long-term risks of all-cause recurrent hospitalization, recurrent chest pain, heart failure, and the need for revascularization by using stents.展开更多
Objective:To establish a stroke prediction and feature analysis model integrating XGBoost and SHAP to aid the clinical diagnosis and prevention of stroke.Methods:Based on the open data set on Kaggle,with the help of d...Objective:To establish a stroke prediction and feature analysis model integrating XGBoost and SHAP to aid the clinical diagnosis and prevention of stroke.Methods:Based on the open data set on Kaggle,with the help of data preprocessing and grid parameter optimization,an interpretable stroke risk prediction model was established by integrating XGBoost and SHAP and an explanatory analysis of risk factors was performed.Results:The XGBoost model’s accuracy,sensitivity,specificity,and area under the receiver operating characteristic(ROC)curve(AUC)were 96.71%,93.83%,99.59%,and 99.19%,respectively.Our explanatory analysis showed that age,type of residence,and history of hypertension were key factors affecting the incidence of stroke.Conclusion:Based on the data set,our analysis showed that the established model can be used to identify stroke,and our explanatory analysis based on SHAP increases the transparency of the model and facilitates medical practitioners to analyze the reliability of the model.展开更多
Prostate cancer(PCa)is the second most common cancer among men worldwide and even ranks first in Europe.Although Asia is known as the region with the lowest PCa incidence,it has been rising rapidly over the last 20 ye...Prostate cancer(PCa)is the second most common cancer among men worldwide and even ranks first in Europe.Although Asia is known as the region with the lowest PCa incidence,it has been rising rapidly over the last 20 years mostly due to the introduction of prostate-specific antigen(PSA)testing.Randomized PCa screening studies in Europe show a mortality reduction in favor of PSA-based screening but coincide with high proportions of unnecessary biopsies,overdiagnosis and subsequent overtreatment.Conclusive data on the value of PSA-based screening and hence the balance between harms and benefits in Asia is still lacking.Because of known racial variations,Asian countries should not directly apply the European screening models.Like in the western world also in Asia,new predictive markers,tools and risk stratification strategies hold great potential to improve the early detection of PCa and to reduce the worldwide existing negative aspects of PSA-based PCa screening.展开更多
基金supported by grants from the National Nat-ural Science Foundation of China (81570587 and 81700557)the Guangdong Provincial Key Laboratory Construction Projection on Organ Donation and Transplant Immunology (2013A061401007 and 2017B030314018)+3 种基金Guangdong Provincial Natural Science Funds for Major Basic Science Culture Project (2015A030308010)Science and Technology Program of Guangzhou (201704020150)the Natural Science Foundations of Guangdong province (2016A030310141 and 2020A1515010091)Young Teachers Training Project of Sun Yat-sen University (K0401068) and the Guangdong Science and Technology Innovation Strategy (pdjh2022b0010 and pdjh2023a0002)。
文摘Background: Primary non-function(PNF) and early allograft failure(EAF) after liver transplantation(LT) seriously affect patient outcomes. In clinical practice, effective prognostic tools for early identifying recipients at high risk of PNF and EAF were urgently needed. Recently, the Model for Early Allograft Function(MEAF), PNF score by King's College(King-PNF) and Balance-and-Risk-Lactate(BAR-Lac) score were developed to assess the risks of PNF and EAF. This study aimed to externally validate and compare the prognostic performance of these three scores for predicting PNF and EAF. Methods: A retrospective study included 720 patients with primary LT between January 2015 and December 2020. MEAF, King-PNF and BAR-Lac scores were compared using receiver operating characteristic(ROC) and the net reclassification improvement(NRI) and integrated discrimination improvement(IDI) analyses. Results: Of all 720 patients, 28(3.9%) developed PNF and 67(9.3%) developed EAF in 3 months. The overall early allograft dysfunction(EAD) rate was 39.0%. The 3-month patient mortality was 8.6% while 1-year graft-failure-free survival was 89.2%. The median MEAF, King-PNF and BAR-Lac scores were 5.0(3.5–6.3),-2.1(-2.6 to-1.2), and 5.0(2.0–11.0), respectively. For predicting PNF, MEAF and King-PNF scores had excellent area under curves(AUCs) of 0.872 and 0.891, superior to BAR-Lac(AUC = 0.830). The NRI and IDI analyses confirmed that King-PNF score had the best performance in predicting PNF while MEAF served as a better predictor of EAD. The EAF risk curve and 1-year graft-failure-free survival curve showed that King-PNF was superior to MEAF and BAR-Lac scores for stratifying the risk of EAF. Conclusions: MEAF, King-PNF and BAR-Lac were validated as practical and effective risk assessment tools of PNF. King-PNF score outperformed MEAF and BAR-Lac in predicting PNF and EAF within 6 months. BAR-Lac score had a huge advantage in the prediction for PNF without post-transplant variables. Proper use of these scores will help early identify PNF, standardize grading of EAF and reasonably select clinical endpoints in relative studies.
文摘BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages that cannot be treated by radical surgery and which are accompanied by complications such as bodily pain and bone metastasis.Therefore,attention should be given to the mental health status of PC patients as well as physical adverse events in the course of clinical treatment.AIM To analyze the risk factors leading to anxiety and depression in PC patients after castration and build a risk prediction model.METHODS A retrospective analysis was performed on the data of 120 PC cases treated in Xi'an People's Hospital between January 2019 and January 2022.The patient cohort was divided into a training group(n=84)and a validation group(n=36)at a ratio of 7:3.The patients’anxiety symptoms and depression levels were assessed 2 wk after surgery with the Self-Rating Anxiety Scale(SAS)and the Selfrating Depression Scale(SDS),respectively.Logistic regression was used to analyze the risk factors affecting negative mood,and a risk prediction model was constructed.RESULTS In the training group,35 patients and 37 patients had an SAS score and an SDS score greater than or equal to 50,respectively.Based on the scores,we further subclassified patients into two groups:a bad mood group(n=35)and an emotional stability group(n=49).Multivariate logistic regression analysis showed that marital status,castration scheme,and postoperative Visual Analogue Scale(VAS)score were independent risk factors affecting a patient's bad mood(P<0.05).In the training and validation groups,patients with adverse emotions exhibited significantly higher risk scores than emotionally stable patients(P<0.0001).The area under the curve(AUC)of the risk prediction model for predicting bad mood in the training group was 0.743,the specificity was 70.96%,and the sensitivity was 66.03%,while in the validation group,the AUC,specificity,and sensitivity were 0.755,66.67%,and 76.19%,respectively.The Hosmer-Lemeshow test showed aχ^(2) of 4.2856,a P value of 0.830,and a C-index of 0.773(0.692-0.854).The calibration curve revealed that the predicted curve was basically consistent with the actual curve,and the calibration curve showed that the prediction model had good discrimination and accuracy.Decision curve analysis showed that the model had a high net profit.CONCLUSION In PC patients,marital status,castration scheme,and postoperative pain(VAS)score are important factors affecting postoperative anxiety and depression.The logistic regression model can be used to successfully predict the risk of adverse psychological emotions.
基金funded by Outstanding Youth Team Project of Central Universities(QNTD202308).
文摘Suicide has become a critical concern,necessitating the development of effective preventative strategies.Social media platforms offer a valuable resource for identifying signs of suicidal ideation.Despite progress in detecting suicidal ideation on social media,accurately identifying individuals who express suicidal thoughts less openly or infrequently poses a significant challenge.To tackle this,we have developed a dataset focused on Chinese suicide narratives from Weibo’s Tree Hole feature and introduced an ensemble model named Text Convolutional Neural Network based on Social Network relationships(TCNN-SN).This model enhances predictive performance by leveraging social network relationship features and applying correction factors within a weighted linear fusion framework.It is specifically designed to identify key individuals who can help uncover hidden suicidal users and clusters.Our model,assessed using the bespoke dataset and benchmarked against alternative classification approaches,demonstrates superior accuracy,F1-score and AUC metrics,achieving 88.57%,88.75%and 94.25%,respectively,outperforming traditional TextCNN models by 12.18%,10.84%and 10.85%.We assert that our methodology offers a significant advancement in the predictive identification of individuals at risk,thereby contributing to the prevention and reduction of suicide incidences.
基金the financially supported by the National Natural Science Foundation of China(Grant No.52104013)the China Postdoctoral Science Foundation(Grant No.2022T150724)。
文摘Due to the complexity and variability of carbonate formation leakage zones, lost circulation prediction and control is one of the major challenges of carbonate drilling. It raises well-control risks and production expenses. This research utilizes the H oilfield as an example, employs seismic features to analyze mud loss prediction, and produces a complete set of pre-drilling mud loss prediction solutions. Firstly, 16seismic attributes are calculated based on the post-stack seismic data, and the mud loss rate per unit footage is specified. The sample set is constructed by extracting each attribute from the seismic trace surrounding 15 typical wells, with a ratio of 8:2 between the training set and the test set. With the calibration results for mud loss rate per unit footage, the nonlinear mapping relationship between seismic attributes and mud loss rate per unit size is established using the mixed density network model.Then, the influence of the number of sub-Gausses and the uncertainty coefficient on the model's prediction is evaluated. Finally, the model is used in conjunction with downhole drilling conditions to assess the risk of mud loss in various layers and along the wellbore trajectory. The study demonstrates that the mean relative errors of the model for training data and test data are 6.9% and 7.5%, respectively, and that R2is 90% and 88%, respectively, for training data and test data. The accuracy and efficacy of mud loss prediction may be greatly enhanced by combining 16 seismic attributes with the mud loss rate per unit footage and applying machine learning methods. The mud loss prediction model based on the MDN model can not only predict the mud loss rate but also objectively evaluate the prediction based on the quality of the data and the model.
文摘BACKGROUND Hypothermia during laparoscopic surgery in patients with multiple trauma is a significant concern owing to its potential complications.Machine learning models offer a promising approach to predict the occurrence of intraoperative hypothermia.AIM To investigate the value of machine learning model to predict hypothermia during laparoscopic surgery in patients with multiple trauma.METHODS This retrospective study enrolled 220 patients who were admitted with multiple injuries between June 2018 and December 2023.Of these,154 patients were allocated to a training set and the remaining 66 were allocated to a validation set in a 7:3 ratio.In the training set,53 cases experienced intraoperative hypothermia and 101 did not.Logistic regression analysis was used to construct a predictive model of intraoperative hypothermia in patients with polytrauma undergoing laparoscopic surgery.The area under the curve(AUC),sensitivity,and specificity were calculated.RESULTS Comparison of the hypothermia and non-hypothermia groups found significant differences in sex,age,baseline temperature,intraoperative temperature,duration of anesthesia,duration of surgery,intraoperative fluid infusion,crystalloid infusion,colloid infusion,and pneumoperitoneum volume(P<0.05).Differences between other characteristics were not significant(P>0.05).The results of the logistic regression analysis showed that age,baseline temperature,intraoperative temperature,duration of anesthesia,and duration of surgery were independent influencing factors for intraoperative hypothermia during laparoscopic surgery(P<0.05).Calibration curve analysis showed good consistency between the predicted occurrence of intraoperative hypothermia and the actual occurrence(P>0.05).The predictive model had AUCs of 0.850 and 0.829 for the training and validation sets,respectively.CONCLUSION Machine learning effectively predicted intraoperative hypothermia in polytrauma patients undergoing laparoscopic surgery,which improved surgical safety and patient recovery.
文摘BACKGROUND Acute myocardial infarction(AMI)is a severe cardiovascular disease caused by the blockage of coronary arteries that leads to ischemic necrosis of the myocardium.Timely medical contact is critical for successful AMI treatment,and delays increase the risk of death for patients.Pre-hospital delay time(PDT)is a significant challenge for reducing treatment times,as identifying high-risk patients with AMI remains difficult.This study aims to construct a risk prediction model to identify high-risk patients and develop targeted strategies for effective and prompt care,ultimately reducing PDT and improving treatment outcomes.AIM To construct a nomogram model for forecasting pre-hospital delay(PHD)likelihood in patients with AMI and to assess the precision of the nomogram model in predicting PHD risk.METHODS A retrospective cohort design was employed to investigate predictive factors for PHD in patients with AMI diagnosed between January 2022 and September 2022.The study included 252 patients,with 180 randomly assigned to the development group and the remaining 72 to the validation group in a 7:3 ratio.Independent risk factors influencing PHD were identified in the development group,leading to the establishment of a nomogram model for predicting PHD in patients with AMI.The model's predictive performance was evaluated using the receiver operating characteristic curve in both the development and validation groups.RESULTS Independent risk factors for PHD in patients with AMI included living alone,hyperlipidemia,age,diabetes mellitus,and digestive system diseases(P<0.05).A characteristic curve analysis indicated area under the receiver operating characteristic curve values of 0.787(95%confidence interval:0.716–0.858)and 0.770(95%confidence interval:0.660-0.879)in the development and validation groups,respectively,demonstrating the model's good discriminatory ability.The Hosmer–Lemeshow goodness-of-fit test revealed no statistically significant disparity between the anticipated and observed incidence of PHD in both development and validation cohorts(P>0.05),indicating satisfactory model calibration.CONCLUSION The nomogram model,developed with independent risk factors,accurately forecasts PHD likelihood in AMI individuals,enabling efficient identification of PHD risk in these patients.
基金the Natural Science Foundation of Hunan Provincial Department of Science and Technology,Departmental Joint Fund,No.2023JJ60360.
文摘BACKGROUND Post-burn anxiety and depression affect considerably the quality of life and recovery of patients;however,limited research has demonstrated risk factors associated with the development of these conditions.AIM To predict the risk of developing post-burn anxiety and depression in patients with non-mild burns using a nomogram model.METHODS We enrolled 675 patients with burns who were admitted to The Second Affiliated Hospital,Hengyang Medical School,University of South China between January 2019 and January 2023 and met the inclusion criteria.These patients were randomly divided into development(n=450)and validation(n=225)sets in a 2:1 ratio.Univariate and multivariate logistic regression analyses were conducted to identify the risk factors associated with post-burn anxiety and depression dia-gnoses,and a nomogram model was constructed.RESULTS Female sex,age<33 years,unmarried status,burn area≥30%,and burns on the head,face,and neck were independent risk factors for developing post-burn anxiety and depression in patients with non-mild burns.The nomogram model demonstrated predictive accuracies of 0.937 and 0.984 for anxiety and 0.884 and 0.923 for depression in the development and validation sets,respectively,and good predictive per-formance.Calibration and decision curve analyses confirmed the clinical utility of the nomogram.CONCLUSION The nomogram model predicted the risk of post-burn anxiety and depression in patients with non-mild burns,facilitating the early identification of high-risk patients for intervention and treatment.
基金the Special Fund for Clinical Research of Nanjing Drum Tower Hospital,No.2021-LCYJ-PY-01.
文摘BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is a cause of acute-onchronic liver failure(ACLF).AIM To investigate the risk factors of ACLF within 1 year after TIPS in patients with cirrhosis and construct a prediction model.METHODS In total,379 patients with decompensated cirrhosis treated with TIPS at Nanjing Drum Tower Hospital from 2017 to 2020 were selected as the training cohort,and 123 patients from Nanfang Hospital were included in the external validation cohort.Univariate and multivariate logistic regression analyses were performed to identify independent predictors.The prediction model was established based on the Akaike information criterion.Internal and external validation were conducted to assess the performance of the model.RESULTS Age and total bilirubin(TBil)were independent risk factors for the incidence of ACLF within 1 year after TIPS.We developed a prediction model comprising age,TBil,and serum sodium,which demonstrated good discrimination and calibration in both the training cohort and the external validation cohort.CONCLUSION Age and TBil are independent risk factors for the incidence of ACLF within 1 year after TIPS in patients with decompensated cirrhosis.Our model showed satisfying predictive value.
文摘In this editorial,we comment on the article by Chen et al.We specifically focus on the risk factors,prognostic factors,and management of brain metastasis(BM)in breast cancer(BC).BC is the second most common cancer to have BM after lung cancer.Independent risk factors for BM in BC are:HER-2 positive BC,triplenegative BC,and germline BRCA mutation.Other factors associated with BM are lung metastasis,age less than 40 years,and African and American ancestry.Even though risk factors associated with BM in BC are elucidated,there is a lack of data on predictive models for BM in BC.Few studies have been made to formulate predictive models or nomograms to address this issue,where age,grade of tumor,HER-2 receptor status,and number of metastatic sites(1 vs>1)were predictive of BM in metastatic BC.However,none have been used in clinical practice.National Comprehensive Cancer Network recommends screening of BM in advanced BC only when the patient is symptomatic or suspicious of central nervous system symptoms;routine screening for BM in BC is not recommended in the guidelines.BM decreases the quality of life and will have a significant psychological impact.Further studies are required for designing validated nomograms or predictive models for BM in BC;these models can be used in the future to develop treatment approaches to prevent BM,which improves the quality of life and overall survival.
基金the National Key R&D Program in the Thirteenth Five-year Plan from the Chinese Ministry of Science and Technology[No.2016YFC0900600,2016YFC0900604]。
文摘Objective The study aims to predict 10-year cardiovascular disease(CVD)risk and explore its association with sleep duration among Chinese urban adults.Methods We analyzed part of the baseline data of a cohort that recruited adults for health screening by cluster sampling.The simplified Pittsburgh Sleep Quality Index(PSQI)and Framingham 10-year risk score(FRS)were used to measure sleep duration and CVD risk.Demographic characteristics,personal history of chronic diseases,lifestyle factors were collected using a questionnaire.Height,weight,total cholesterol(TC),and high-density lipoprotein cholesterol(HDL-C)were also measured.Multiple logistic regression models were performed to explore the association of sleep duration with the predicted CVD risk.Results We included 31,135 participants(median age 44 years,53.02%males)free of CVD,cerebral stroke,and not taking lipid-lowering agents.Overall,14.05%,and 25.55%of participants were at medium and high predicted CVD risk,respectively.Short sleep was independently associated with increased odds of medium to high risk of predicted 10-year CVD among males(OR=1.10;95%CI:1.01–1.19)and increased odds of medium to high and high risk of predicted 10-year CVD among females(OR=1.23;95%CI:1.08–1.40;OR=1.27;95%CI:1.11–1.44).In contrast,long sleep had no association with cardiovascular risk.Conclusion A substantial number of adults free of CVD were at high 10-year CVD risk.Short sleep was associated with increased odds of predicted CVD risk.
基金Supported by Ningxia Key Research and Development Program,No.2018BEG03001.
文摘BACKGROUND Surgical resection is the primary treatment for hepatocellular carcinoma(HCC).However,studies indicate that nearly 70%of patients experience HCC recurrence within five years following hepatectomy.The earlier the recurrence,the worse the prognosis.Current studies on postoperative recurrence primarily rely on postoperative pathology and patient clinical data,which are lagging.Hence,developing a new pre-operative prediction model for postoperative recurrence is crucial for guiding individualized treatment of HCC patients and enhancing their prognosis.AIM To identify key variables in pre-operative clinical and imaging data using machine learning algorithms to construct multiple risk prediction models for early postoperative recurrence of HCC.METHODS The demographic and clinical data of 371 HCC patients were collected for this retrospective study.These data were randomly divided into training and test sets at a ratio of 8:2.The training set was analyzed,and key feature variables with predictive value for early HCC recurrence were selected to construct six different machine learning prediction models.Each model was evaluated,and the bestperforming model was selected for interpreting the importance of each variable.Finally,an online calculator based on the model was generated for daily clinical practice.RESULTS Following machine learning analysis,eight key feature variables(age,intratumoral arteries,alpha-fetoprotein,preoperative blood glucose,number of tumors,glucose-to-lymphocyte ratio,liver cirrhosis,and pre-operative platelets)were selected to construct six different prediction models.The XGBoost model outperformed other models,with the area under the receiver operating characteristic curve in the training,validation,and test datasets being 0.993(95%confidence interval:0.982-1.000),0.734(0.601-0.867),and 0.706(0.585-0.827),respectively.Calibration curve and decision curve analysis indicated that the XGBoost model also had good predictive performance and clinical application value.CONCLUSION The XGBoost model exhibits superior performance and is a reliable tool for predicting early postoperative HCC recurrence.This model may guide surgical strategies and postoperative individualized medicine.
文摘Objective It is difficult to predict fulminant myocarditis at an early stage in the emergency department.The objective of this study was to construct and validate a simple prediction model for the early identification of fulminant myocarditis.Methods A total of 61 patients with fulminant myocarditis and 160 patients with acute myocarditis were enrolled in the training and internal validation cohorts.LASSO regression and multivariate logistic regression were selected to develop the prediction model.The selection of the model was based on overall performance and simplicity.A nomogram based on the optimal model was built,and its clinical usefulness was evaluated by decision curve analysis.The predictive model was further validated in an external validation group.Results The resulting prediction model was based on 4 factors:systolic blood pressure,troponin I,left ventricular ejection fraction,and ventricular wall motion abnormality.The Brier scores of the final model were 0.078 in the training data set and 0.061 in the internal testing data set,respectively.The C-indexes of the training data set and the testing data set were 0.952 and 0.968,respectively.Decision curve analysis showed that the nomogram model developed based on the 4 predictors above had a positive net benefit for predicting probability thresholds.In the external validation cohort,the model also showed good performance(Brier score=0.007,and C-index=0.989).Conclusion We developed and validated an early prediction model consisting of 4 clinical factors(systolic blood pressure,troponin I,left ventricular ejection fraction,and ventricular wall motion abnormality)to identify potential fulminant myocarditis patients in the emergency department.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is difficult to diagnose with poor therapeutic effect,high recurrence rate and has a low survival rate.The survival of patients with HCC is closely related to the stage of diagnosis.At present,no specific serolo-gical indicator or method to predict HCC,early diagnosis of HCC remains a challenge,especially in China,where the situation is more severe.AIM To identify risk factors associated with HCC and establish a risk prediction model based on clinical characteristics and liver-related indicators.METHODS The clinical data of patients in the Affiliated Hospital of North Sichuan Medical College from 2016 to 2020 were collected,using a retrospective study method.The results of needle biopsy or surgical pathology were used as the grouping criteria for the experimental group and the control group in this study.Based on the time of admission,the cases were divided into training cohort(n=1739)and validation cohort(n=467).Using HCC as a dependent variable,the research indicators were incorporated into logistic univariate and multivariate analysis.An HCC risk prediction model,which was called NSMC-HCC model,was then established in training cohort and verified in validation cohort.RESULTS Logistic univariate analysis showed that,gender,age,alpha-fetoprotein,and protein induced by vitamin K absence or antagonist-II,gamma-glutamyl transferase,aspartate aminotransferase and hepatitis B surface antigen were risk factors for HCC,alanine aminotransferase,total bilirubin and total bile acid were protective factors for HCC.When the cut-off value of the NSMC-HCC model joint prediction was 0.22,the area under receiver operating characteristic curve(AUC)of NSMC-HCC model in HCC diagnosis was 0.960,with sensitivity 94.40%and specificity 95.35%in training cohort,and AUC was 0.966,with sensitivity 90.00%and specificity 94.20%in validation cohort.In early-stage HCC diagnosis,the AUC of NSMC-HCC model was 0.946,with sensitivity 85.93%and specificity 93.62%in training cohort,and AUC was 0.947,with sensitivity 89.10%and specificity 98.49%in validation cohort.CONCLUSION The newly NSMC-HCC model was an effective risk prediction model in HCC and early-stage HCC diagnosis.
基金supported by the Beijing Municipal Science and Technology Commission[No.Z191100006619093&Z191100006619094]the National Science Foundation of China(No.81970393).
文摘Introduction:Acute type A aortic dissection(ATAAD)is a catastrophic disease with fatal outcomes.Malperfusion syndrome(MPS)is a serious complication of ATAAD,with an incidence of 20–40%.Many studies have shown that MPS is the main risk factor for poor ATAAD prognosis.However,a risk scoring system for ATAAD based on MPS is lacking.Here,we designed a risk scoring system for ATAAD to assess mortality through quantitative assessment of relevant organ malperfusion and subsequently develop rational treatment strategies.Methods and analysis:This was a prospective observational study.Patients’perioperative clinical data were col-lected to establish a database of ATAAD(N≥3000)and determine whether these patients had malperfusion complica-tions.The Anzhen risk scoring system was established on the basis of organ malperfusion by using a random forest survival model and a logistics model.The better method was then chosen to establish a revised risk scoring system.Ethics and dissemination:This study received ethical approval from the Ethics Committees of Beijing Anzhen Hospital,Capital Medical University(KS2019034-1).Patient consent was waived because biological samples were not collected,and no patient rights were violated.Findings will be disseminated at scientific conferences and in peer-reviewed publications.
文摘BACKGROUND Urinary sepsis is frequently seen in patients with diabetes mellitus(DM)complicated with upper urinary tract calculi(UUTCs).Currently,the known risk factors of urinary sepsis are not uniform.AIM To analyze the risk factors of concurrent urinary sepsis in patients with DM complicated with UUTCs by logistic regression.METHODS We retrospectively analyzed 384 patients with DM complicated with UUTCs treated in People’s Hospital of Jincheng between February 2018 and May 2022.The patients were screened according to the inclusion and exclusion criteria,and 204 patients were enrolled.The patients were assigned to an occurrence group(n=78)and a nonoccurrence group(n=126).Logistic regression was adopted to analyze the risk factors for urinary sepsis,and a risk prediction model was established.RESULTS Gender,age,history of lumbago and abdominal pain,operation time,urine leukocytes(U-LEU)and urine glucose(U-GLU)were independent risk factors for patients with concurrent urinary sepsis(P<0.05).Risk score=0.794×gender+0.941×age+0.901×history of lumbago and abdominal pain-1.071×operation time+1.972×U-LEU+1.541×U-GLU.The occurrence group had notably higher risk scores than the nonoccurrence group(P<0.0001).The area under the curve of risk score for forecasting concurrent urinary sepsis in patients was 0.801,with specificity of 73.07%,sensitivity of 79.36%and Youden index of 52.44%.CONCLUSION Sex,age,history of lumbar and abdominal pain,operation time,ULEU and UGLU are independent risk factors for urogenic sepsis in diabetic patients with UUTC.
文摘BACKGROUND Colorectal cancer(CRC)is a significant global health issue,and lymph node metastasis(LNM)is a crucial prognostic factor.Accurate prediction of LNM is essential for developing individualized treatment strategies for patients with CRC.However,the prediction of LNM is challenging and depends on various factors such as tumor histology,clinicopathological features,and molecular characteristics.The most reliable method to detect LNM is the histopathological examination of surgically resected specimens;however,this method is invasive,time-consuming,and subject to sampling errors and interobserver variability.AIM To analyze influencing factors and develop and validate a risk prediction model for LNM in CRC based on a large patient queue.METHODS This study retrospectively analyzed 300 patients who underwent CRC surgery at two Peking University Shenzhen hospitals between January and December 2021.A deep learning approach was used to extract features potentially associated with LNM from primary tumor histological images while a logistic regression model was employed to predict LNM in CRC using machine-learning-derived features and clinicopathological variables as predictors.RESULTS The prediction model constructed for LNM in CRC was based on a logistic regression framework that incorporated machine learning-extracted features and clinicopathological variables.The model achieved high accuracy(0.86),sensitivity(0.81),specificity(0.87),positive predictive value(0.66),negative predictive value(0.94),area under the curve for the receiver operating characteristic(0.91),and a low Brier score(0.10).The model showed good agreement between the observed and predicted probabilities of LNM across a range of risk thresholds,indicating good calibration and clinical utility.CONCLUSION The present study successfully developed and validated a potent and effective risk-prediction model for LNM in patients with CRC.This model utilizes machine-learning-derived features extracted from primary tumor histology and clinicopathological variables,demonstrating superior performance and clinical applicability compared to existing models.The study provides new insights into the potential of deep learning to extract valuable information from tumor histology,in turn,improving the prediction of LNM in CRC and facilitate risk stratification and decision-making in clinical practice.
文摘BACKGROUND Spinal osteoporosis is a prevalent health condition characterized by the thinning of bone tissues in the spine,increasing the risk of fractures.Given its high incidence,especially among older populations,it is critical to have accurate and effective predictive models for fracture risk.Traditionally,clinicians have relied on a combination of factors such as demographics,clinical attributes,and radiological characteristics to predict fracture risk in these patients.However,these models often lack precision and fail to include all potential risk factors.There is a need for a more comprehensive,statistically robust prediction model that can better identify high-risk individuals for early intervention.AIM To construct and validate a model for forecasting fracture risk in patients with spinal osteoporosis.METHODS The medical records of 80 patients with spinal osteoporosis who were diagnosed and treated between 2019 and 2022 were retrospectively examined.The patients were selected according to strict criteria and categorized into two groups:Those with fractures(n=40)and those without fractures(n=40).Demographics,clinical attributes,biochemical indicators,bone mineral density(BMD),and radiological characteristics were collected and compared.A logistic regression analysis was employed to create an osteoporotic fracture risk-prediction model.The area under the receiver operating characteristic curve(AUROC)was used to evaluate the model’s performance.RESULTS Factors significantly associated with fracture risk included age,sex,body mass index(BMI),smoking history,BMD,vertebral trabecular alterations,and prior vertebral fractures.The final risk-prediction model was developed using the formula:(logit[P]=-3.75+0.04×age-1.15×sex+0.02×BMI+0.83×smoking history+2.25×BMD-1.12×vertebral trabecular alterations+1.83×previous vertebral fractures).The AUROC of the model was 0.93(95%CI:0.88-0.96,P<0.001),indicating strong discriminatory capabilities.CONCLUSION The fracture risk-prediction model,utilizing accessible clinical,biochemical,and radiological information,offered a precise tool for the evaluation of fracture risk in patients with spinal osteoporosis.The model has potential in the identification of high-risk individuals for early intervention and the guidance of appropriate preventive actions to reduce the impact of osteoporosis-related fractures.
文摘Background: Risk stratification of long-term outcomes for patients undergoing Coronary artery bypass grafting has enormous potential clinical importance. Aim: To develop risk stratification models for predicting long-term outcomes following coronary artery bypass graft (CABG) surgery. Methods: We retrospectively revised the electronic medical records of 2330 patients who underwent adult Cardiac surgery between August 2016 and December 2022 at Madinah Cardiac Center, Saudi Arabia. Three hundred patients fulfilled the eligibility criteria of CABG operations with a complete follow-up period of at least 24 months, and data reporting. The collected data included patient demographics, comorbidities, laboratory data, pharmacotherapy, echocardiographic parameters, procedural details, postoperative data, in-hospital outcomes, and follow-up data. Our follow-up was depending on the clinical status (NYHA class), chest pain recurrence, medication dependence and echo follow-up. A univariate analysis was performed between each patient risk factor and the long-term outcome to determine the preoperative, operative, and postoperative factors significantly associated with each long-term outcome. Then a multivariable logistic regression analysis was performed with a stepwise, forward selection procedure. Significant (p < 0.05) risk factors were identified and were used as candidate variables in the development of a multivariable risk prediction model. Results: The incidence of all-cause mortality during hospital admission or follow-up period was 2.3%. Other long-term outcomes included all-cause recurrent hospitalization (9.8%), recurrent chest pain (2.4%), and the need for revascularization by using a stent in 5 (3.0%) patients. Thirteen (4.4%) patients suffered heart failure and they were on the maximum anti-failure medications. The model for predicting all-cause mortality included the preoperative EF ≤ 35% (AOR: 30.757, p = 0.061), the bypass time (AOR: 1.029, p = 0.003), and the duration of ventilation following the operation (AOR: 1.237, p = 0.021). The model for risk stratification of recurrent hospitalization comprised the preoperative EF ≤ 35% (AOR: 6.198, p p = 0.023), low postoperative cardiac output (AOR: 3.622, p = 0.007), and the development of postoperative atrial fibrillation (AOR: 2.787, p = 0.038). Low postoperative cardiac output was the only predictor that significantly contributed to recurrent chest pain (AOR: 11.66, p = 0.004). Finally, the model consisted of low postoperative cardiac output (AOR: 5.976, p < 0.001) and postoperative ventricular fibrillation (AOR: 4.216, p = 0.019) was significantly associated with an increased likelihood of the future need for revascularization using a stent. Conclusions: A risk prediction model was developed in a Saudi cohort for predicting all-cause mortality risk during both hospital admission and the follow-up period of at least 24 months after isolated CABG surgery. A set of models were also developed for predicting long-term risks of all-cause recurrent hospitalization, recurrent chest pain, heart failure, and the need for revascularization by using stents.
基金the National Natural Science Foundation Project(Grant No.61863027)the Special Research Project on High Quality Development of Innovation and Entrepreneurship Education of the Chinese Society of Higher Education(Grant No.21CXD01)the Key R&D Plan of Jiangxi Province(Grant No.20202BBGL73057).
文摘Objective:To establish a stroke prediction and feature analysis model integrating XGBoost and SHAP to aid the clinical diagnosis and prevention of stroke.Methods:Based on the open data set on Kaggle,with the help of data preprocessing and grid parameter optimization,an interpretable stroke risk prediction model was established by integrating XGBoost and SHAP and an explanatory analysis of risk factors was performed.Results:The XGBoost model’s accuracy,sensitivity,specificity,and area under the receiver operating characteristic(ROC)curve(AUC)were 96.71%,93.83%,99.59%,and 99.19%,respectively.Our explanatory analysis showed that age,type of residence,and history of hypertension were key factors affecting the incidence of stroke.Conclusion:Based on the data set,our analysis showed that the established model can be used to identify stroke,and our explanatory analysis based on SHAP increases the transparency of the model and facilitates medical practitioners to analyze the reliability of the model.
文摘Prostate cancer(PCa)is the second most common cancer among men worldwide and even ranks first in Europe.Although Asia is known as the region with the lowest PCa incidence,it has been rising rapidly over the last 20 years mostly due to the introduction of prostate-specific antigen(PSA)testing.Randomized PCa screening studies in Europe show a mortality reduction in favor of PSA-based screening but coincide with high proportions of unnecessary biopsies,overdiagnosis and subsequent overtreatment.Conclusive data on the value of PSA-based screening and hence the balance between harms and benefits in Asia is still lacking.Because of known racial variations,Asian countries should not directly apply the European screening models.Like in the western world also in Asia,new predictive markers,tools and risk stratification strategies hold great potential to improve the early detection of PCa and to reduce the worldwide existing negative aspects of PSA-based PCa screening.