The airborne base station(ABS) can provide wireless coverage to the ground in unmanned aerial vehicle(UAV) cellular networks.When mobile users move among adjacent ABSs,the measurement information reported by a single ...The airborne base station(ABS) can provide wireless coverage to the ground in unmanned aerial vehicle(UAV) cellular networks.When mobile users move among adjacent ABSs,the measurement information reported by a single mobile user is used to trigger the handover mechanism.This handover mechanism lacks the consideration of movement state of mobile users and the location relationship between mobile users,which may lead to handover misjudgments and even communication interrupts.In this paper,we propose an intelligent handover control method in UAV cellular networks.Firstly,we introduce a deep learning model to predict the user trajectories.This prediction model learns the movement behavior of mobile users from the measurement information and analyzes the positional relations between mobile users such as avoiding collision and accommodating fellow pedestrians.Secondly,we propose a handover decision method,which can calculate the users' corresponding receiving power based on the predicted location and the characteristic of air-to-ground channel,to make handover decisions accurately.Finally,we use realistic data sets with thousands of non-linear trajectories to verify the basic functions and performance of our proposed intelligent handover controlmethod.The simulation results show that the handover success rate of the proposed method is 8% higher than existing methods.展开更多
深度学习能够从大量原始数据中提取高级抽象特征而不依赖于先验知识,对于金融市场预测具有潜在的吸引力。基于"分解—重构—综合"的思想,提出了一种全新的深度学习预测方法论,并在此基础上构建了一种股票市场单步向前的深度...深度学习能够从大量原始数据中提取高级抽象特征而不依赖于先验知识,对于金融市场预测具有潜在的吸引力。基于"分解—重构—综合"的思想,提出了一种全新的深度学习预测方法论,并在此基础上构建了一种股票市场单步向前的深度学习复合预测模型——CEEMD-LSTM。在此模型中,序列平稳化分解模块的CEEMD能将时间序列中不同尺度的波动或趋势逐级分解出来,产生一系列不同特征尺度的本征模态函数(Intrinsic Mode Function,IMF);采用深度学习中适合处理时间序列的长短期记忆网络(Long-Short Term Memory,LSTM)分别对每个IMF与趋势项提取高级、深度特征,并预测下一交易日收盘价的收益率;最后,综合各个IMF分量以及趋势项的预测值,得到最终的预测值。基于3类不同发达程度股票市场的股票指数的实证结果表明,此模型在预测的两个维度即预测误差与预测命中率上均要优于其他参照模型。展开更多
基金supported in parts by the National Natural Science Foundation of China for Distinguished Young Scholar under Grant 61425012the National Science and Technology Major Projects for the New Generation of Broadband Wireless Communication Network under Grant 2017ZX03001014
文摘The airborne base station(ABS) can provide wireless coverage to the ground in unmanned aerial vehicle(UAV) cellular networks.When mobile users move among adjacent ABSs,the measurement information reported by a single mobile user is used to trigger the handover mechanism.This handover mechanism lacks the consideration of movement state of mobile users and the location relationship between mobile users,which may lead to handover misjudgments and even communication interrupts.In this paper,we propose an intelligent handover control method in UAV cellular networks.Firstly,we introduce a deep learning model to predict the user trajectories.This prediction model learns the movement behavior of mobile users from the measurement information and analyzes the positional relations between mobile users such as avoiding collision and accommodating fellow pedestrians.Secondly,we propose a handover decision method,which can calculate the users' corresponding receiving power based on the predicted location and the characteristic of air-to-ground channel,to make handover decisions accurately.Finally,we use realistic data sets with thousands of non-linear trajectories to verify the basic functions and performance of our proposed intelligent handover controlmethod.The simulation results show that the handover success rate of the proposed method is 8% higher than existing methods.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences [grant number XDA 19060102]supported by the National Natural Science Foundation of China[grant number 42030410]+2 种基金the Laoshan Laboratory [grant number LSL202202402]the Strategic Priority Research Program of the Chinese Academy of Sciences [grant number XDB40000000]the Startup Foundation for Introducing Talent of NUIST
文摘深度学习能够从大量原始数据中提取高级抽象特征而不依赖于先验知识,对于金融市场预测具有潜在的吸引力。基于"分解—重构—综合"的思想,提出了一种全新的深度学习预测方法论,并在此基础上构建了一种股票市场单步向前的深度学习复合预测模型——CEEMD-LSTM。在此模型中,序列平稳化分解模块的CEEMD能将时间序列中不同尺度的波动或趋势逐级分解出来,产生一系列不同特征尺度的本征模态函数(Intrinsic Mode Function,IMF);采用深度学习中适合处理时间序列的长短期记忆网络(Long-Short Term Memory,LSTM)分别对每个IMF与趋势项提取高级、深度特征,并预测下一交易日收盘价的收益率;最后,综合各个IMF分量以及趋势项的预测值,得到最终的预测值。基于3类不同发达程度股票市场的股票指数的实证结果表明,此模型在预测的两个维度即预测误差与预测命中率上均要优于其他参照模型。