The classical momentum-blade element theory is improved by using the empirical formula while part of rotor blades enters into the turbulent wake state, and the performance of a horizontal-axis wind turbine (HAWT) at a...The classical momentum-blade element theory is improved by using the empirical formula while part of rotor blades enters into the turbulent wake state, and the performance of a horizontal-axis wind turbine (HAWT) at all speed ratios can be predicted. By using an improved version of the so-called secant method, the convergent solutions of the system of two-dimensional equations concerning the induced velocity factors a and a' are guaranteed. Besides, a solving method of multiple solutions for a and a' is proposed and discussed. The method provided in this paper can be used for computing the aerodynamic performance of HAWTs both ofrlow solidity and of high solidity. The calculated results coincide well with the experimental data.展开更多
针对传统风电功率预测仅考虑气象因素,且无法计及风电机组真实出力状态导致预测精度较差问题,本文提出一种计及风机状态的超短期风电功率动态预测方法。首先,为能够精确评估风机状态,将BP(error back propagation, BP)算法引入层次分析...针对传统风电功率预测仅考虑气象因素,且无法计及风电机组真实出力状态导致预测精度较差问题,本文提出一种计及风机状态的超短期风电功率动态预测方法。首先,为能够精确评估风机状态,将BP(error back propagation, BP)算法引入层次分析法(analytic hierarchy process, AHP)的评估结构中,构建BP-AHP风机状态评估模型,实现单台风机状态评估;然后,综合考虑地形及机组排布等因素,将风电场所有风机的状态取均值作为风电场状态,利用皮尔逊相关系数衡量所评估状态与功率之间的相关性以验证评估模型合理性,并采用XGBoost构建计及风机状态的动态预测模型;最后,以陕西地区某风电场实测数据进行算例分析,验证了所提方法的可行性及有效性。展开更多
文中首先聚焦于风电机组桨叶零位偏移故障,利用GH-Bladed风机仿真软件仿真不同工况下的桨叶零位偏移,研究零位偏差对运行机组叶轮转速、叶根弯矩的影响,并采用风电机组轴向加速度1P谐波幅值和3P谐波幅值之比拟合桨叶零位偏差判定曲线图...文中首先聚焦于风电机组桨叶零位偏移故障,利用GH-Bladed风机仿真软件仿真不同工况下的桨叶零位偏移,研究零位偏差对运行机组叶轮转速、叶根弯矩的影响,并采用风电机组轴向加速度1P谐波幅值和3P谐波幅值之比拟合桨叶零位偏差判定曲线图,构建桨叶零位偏差判定模型。再基于神经网络技术,分析机组实际运行数据采集与监视控制系统(Supervisory Control And Data Acquisition,SCADA)历史数据,完成变桨故障特征提取和数据分析处理,训练添加注意力机制的长短期记忆神经网络(Long Short-term Memory Neural Network,LSTM)模型,构建AT-LSTM变桨健康状态预测模型,并从多个分类模型指标,将AT-LSTM与循环神经网络(RNN)和长短期记忆神经网络(LSTM)进行对比,证明了添加注意力机制对于神经网络带来的提升。展开更多
Maintenance costs account for a significant portion of the total cost of electricity generated by wind turbines.Currently in the wind power industry,maintenance is mainly performed on regular schedules or when signifi...Maintenance costs account for a significant portion of the total cost of electricity generated by wind turbines.Currently in the wind power industry,maintenance is mainly performed on regular schedules or when significant damage occurs in a wind turbine making it inoperable,instead of being determined by the actual condition of the wind turbine.Among the total maintenance costs,approximately 25%~35%is related to regularly scheduled preventive maintenance and 65%~75%to unscheduled corrective maintenance.To reduce the failure rate and level and maintenance costs and improve the availability,reliability,safety,and lifespans of wind turbines,it is desirable to perform condition-based predictive maintenance for wind turbines,which will require a high-fidelity online prognostic condition monitoring system(CMS)for fault diagnosis and prognosis and remaining useful life(RUL)prediction of wind turbines.Most of the existing wind turbine CMSs are based on vibration monitoring and have no or limited capability in fault prognosis and RUL prediction.Compared to vibration monitoring,the prognostic condition monitoring techniques based on generator current signal analysis proposed recently have significant advantages in terms of cost,hardware complexity,implementation,and reliability.This paper discusses the principles and challenges of using generator current signals for prognostic condition monitoring of wind turbine drivetrains and presents an overview of recent advancements in this area.展开更多
风电机组所处环境恶劣,导致风电机组易出现故障。利用数据采集与监控(supervisory control and data acquisition, SCADA)数据预测与评估风电机组整体性能,对风电机组维修与维护具有重要意义。因此,通过分析风电场SCADA系统的海量数据,...风电机组所处环境恶劣,导致风电机组易出现故障。利用数据采集与监控(supervisory control and data acquisition, SCADA)数据预测与评估风电机组整体性能,对风电机组维修与维护具有重要意义。因此,通过分析风电场SCADA系统的海量数据,提取表征机组退化信息的特征参数,通过自适应核主元分析(kernel principal component analysis, KPCA)算法建立基于多维度SCADA参数的风电机组状态监测与异常辨识模型。为了避免复杂工况对评估结果的影响,该模型引入一种工况划分方法。最后,通过某风电场SCADA数据对该模型进行实验验证,并与未进行工况划分的KPCA模型、进行工况划分的PCA模型进行对比。实验结果表明,该模型不但能够准确辨识风电机组的异常状态,且辨识结果更具可靠性。展开更多
文摘The classical momentum-blade element theory is improved by using the empirical formula while part of rotor blades enters into the turbulent wake state, and the performance of a horizontal-axis wind turbine (HAWT) at all speed ratios can be predicted. By using an improved version of the so-called secant method, the convergent solutions of the system of two-dimensional equations concerning the induced velocity factors a and a' are guaranteed. Besides, a solving method of multiple solutions for a and a' is proposed and discussed. The method provided in this paper can be used for computing the aerodynamic performance of HAWTs both ofrlow solidity and of high solidity. The calculated results coincide well with the experimental data.
文摘文中首先聚焦于风电机组桨叶零位偏移故障,利用GH-Bladed风机仿真软件仿真不同工况下的桨叶零位偏移,研究零位偏差对运行机组叶轮转速、叶根弯矩的影响,并采用风电机组轴向加速度1P谐波幅值和3P谐波幅值之比拟合桨叶零位偏差判定曲线图,构建桨叶零位偏差判定模型。再基于神经网络技术,分析机组实际运行数据采集与监视控制系统(Supervisory Control And Data Acquisition,SCADA)历史数据,完成变桨故障特征提取和数据分析处理,训练添加注意力机制的长短期记忆神经网络(Long Short-term Memory Neural Network,LSTM)模型,构建AT-LSTM变桨健康状态预测模型,并从多个分类模型指标,将AT-LSTM与循环神经网络(RNN)和长短期记忆神经网络(LSTM)进行对比,证明了添加注意力机制对于神经网络带来的提升。
基金This work was supported in part by the Office of Energy Efficiency and Renewable Energy(EERE),U.S.Department of Energy under Awards Number DE-EE0006802 and DE-EE0001366in part by the U.S.National Science Foundation under Grant ECCS-1308045.
文摘Maintenance costs account for a significant portion of the total cost of electricity generated by wind turbines.Currently in the wind power industry,maintenance is mainly performed on regular schedules or when significant damage occurs in a wind turbine making it inoperable,instead of being determined by the actual condition of the wind turbine.Among the total maintenance costs,approximately 25%~35%is related to regularly scheduled preventive maintenance and 65%~75%to unscheduled corrective maintenance.To reduce the failure rate and level and maintenance costs and improve the availability,reliability,safety,and lifespans of wind turbines,it is desirable to perform condition-based predictive maintenance for wind turbines,which will require a high-fidelity online prognostic condition monitoring system(CMS)for fault diagnosis and prognosis and remaining useful life(RUL)prediction of wind turbines.Most of the existing wind turbine CMSs are based on vibration monitoring and have no or limited capability in fault prognosis and RUL prediction.Compared to vibration monitoring,the prognostic condition monitoring techniques based on generator current signal analysis proposed recently have significant advantages in terms of cost,hardware complexity,implementation,and reliability.This paper discusses the principles and challenges of using generator current signals for prognostic condition monitoring of wind turbine drivetrains and presents an overview of recent advancements in this area.
文摘风电机组所处环境恶劣,导致风电机组易出现故障。利用数据采集与监控(supervisory control and data acquisition, SCADA)数据预测与评估风电机组整体性能,对风电机组维修与维护具有重要意义。因此,通过分析风电场SCADA系统的海量数据,提取表征机组退化信息的特征参数,通过自适应核主元分析(kernel principal component analysis, KPCA)算法建立基于多维度SCADA参数的风电机组状态监测与异常辨识模型。为了避免复杂工况对评估结果的影响,该模型引入一种工况划分方法。最后,通过某风电场SCADA数据对该模型进行实验验证,并与未进行工况划分的KPCA模型、进行工况划分的PCA模型进行对比。实验结果表明,该模型不但能够准确辨识风电机组的异常状态,且辨识结果更具可靠性。