In order to forecast projectile impact points quickly and accurately,aprojectile impact point prediction method based on generalized regression neural network(GRNN)is presented.Firstly,the model of GRNN forecasting ...In order to forecast projectile impact points quickly and accurately,aprojectile impact point prediction method based on generalized regression neural network(GRNN)is presented.Firstly,the model of GRNN forecasting impact point is established;secondly,the particle swarm algorithm(PSD)is used to optimize the smooth factor in the prediction model and then the optimal GRNN impact point prediction model is obtained.Finally,the numerical simulation of this prediction model is carried out.Simulation results show that the maximum range error is no more than 40 m,and the lateral deviation error is less than0.2m.The average time of impact point prediction is 6.645 ms,which is 1 300.623 ms less than that of numerical integration method.Therefore,it is feasible and effective for the proposed method to forecast projectile impact points,and thus it can provide a theoretical reference for practical engineering applications.展开更多
Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also ...Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also need to modulate the lateral force or trajectory (perpendicular to the vertical plane of fire direction). Therefore, the structure of control cabin of two-dimensional trajectory correction projectile (TDTCP) is more complicated than that of one-dimensional trajectory correction projectile (ODTCP). To simplify the structure of control cabin of TDTCP and reduce the cost, a scheme of adding a damping disk to the control cabin of ODTCP has been developed recently. The damping disk is unfolded at the right moment during its flight to change the ballistic drift of spin stabilized projectile. For this technical scheme of TDTCP, a fast and accurate impact point prediction method based on extended Kalman filter is presented. An approximate formula for predicting the ballistic drift and trajectory correction quantity is deduced. And the lateral correction capability for different fire angles and its influencing factors are analyzed. All the work is valuable for further research.展开更多
An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic traje...An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic trajectory model is applied to generate training samples,and ablation experiments are conducted to determine the mapping relationship between the flight state and the impact point.At the same time,the impact point coordinates are decoupled to improve the prediction accuracy,and the sigmoid activation function is improved to ameliorate the prediction efficiency.Therefore,an IPP neural network model,which solves the contradiction between the accuracy and the speed of the IPP,is established.In view of the performance deviation of the divert control system,the mapping relationship between the guidance parameters and the impact deviation is analysed based on the variational principle.In addition,a fast iterative model of guidance parameters is designed for reference to the Newton iteration method,which solves the nonlinear strong coupling problem of the guidance parameter solution.Monte Carlo simulation results show that the prediction accuracy of the impact point is high,with a 3 σ prediction error of 4.5 m,and the guidance method is robust,with a 3 σ error of 7.5 m.On the STM32F407 singlechip microcomputer,a single IPP takes about 2.374 ms,and a single guidance solution takes about9.936 ms,which has a good real-time performance and a certain engineering application value.展开更多
In modern warfare,unpowered glide munitions,represented by JDAM,are widely used.Accurately predicting the future trajectory of such targets is crucial for intercepting them.This paper proposes a future point predictio...In modern warfare,unpowered glide munitions,represented by JDAM,are widely used.Accurately predicting the future trajectory of such targets is crucial for intercepting them.This paper proposes a future point prediction method for unpowered gliding targets based on attitude computation.By estimating the current state of the target,we derive the target’s attitude coordinate system.Subsequently,the paper analyzes the forces acting on the target and updates the state transition matrix,ultimately calculating the future position of the target.Experimental results show that,compared to traditional methods,this approach improves the accuracy of future point predictions by 9%to 45%.展开更多
Aiming at the difficulty of mining fault prognosis starting points and constructing prognostic models for remaining useful life(RUL)prediction of rolling bearings,a RUL prediction method is proposed based on health in...Aiming at the difficulty of mining fault prognosis starting points and constructing prognostic models for remaining useful life(RUL)prediction of rolling bearings,a RUL prediction method is proposed based on health indicator(HI)extraction and trajectory-enhanced particle filter(TE-PF).By extracting a HI that can accurately track the trending of bearing degradation and combining it with the early fault enhancement technology,early abnormal sample nodes can be mined to provide more samples with fault information for the construction and training of subsequent prediction models.Aiming at the problem that traditional degradation rate models based on PF are vulnerable to HI mutations,a TE-PF prediction method is proposed based on comprehensive utilization of historical degradation information to timely modify prediction model parameters.Results from a rolling bearing prognostic study show that prediction starting points can be accurately detected and a reasonable prediction model can be conveniently constructed by the RUL prediction method based on HI amplitude abnormal detection and TE-PF.Furthermore,aiming at the RUL prediction problem under the condition of HI mutation,RUL prediction with probability and statistics characteristics under a confidence interval can be obtained based on the method proposed.展开更多
Analyzing capacity degradation characteristics and accurately predicting the knee point of capacity are crucial for the safety management of lithium-ion batteries(LIBs).However,the degradation mechanism of LIBs is com...Analyzing capacity degradation characteristics and accurately predicting the knee point of capacity are crucial for the safety management of lithium-ion batteries(LIBs).However,the degradation mechanism of LIBs is complex.A key but challenging problem is how to clarify the degradation mechanism and predict the knee point.According to the external characteristics such as capacity decline gradievnt and the peak value of increment capacity curve(IC curve),the capacity degradation can be divided into four stages,including initial decline stage,slow decline stage,transition stage and high-speed decline stage.The degradation mechanism of LIBs is compared from the longitudinal and horizontal aspects,respectively.Among them,the battery usage from the initial stage to the end of life(EOL)is longitudinal analysis.The battery under different conditions,such as charging and discharging,different discharge rate,different cathode material degradation mechanism is horizontal analysis.Moreover,a method based on neural network is proposed to predict the knee point.Two features are used to predict the capacity and cycle of the knee point,which are the gradient of the capacity degradation curve and the difference of the IC curve with the maximum correlation.The experimental results show that a two-dimensional surface can be obtained using only the first 100 cycles,which can provide a reference for the position of the knee point accurately prediction.展开更多
The first thunderstorm weather appeared in southern Shenyang on May 2,2010 and did not bring about severe lightning disaster for Shenyang region,but forecast service had poor effect without forecasting thunderstorm we...The first thunderstorm weather appeared in southern Shenyang on May 2,2010 and did not bring about severe lightning disaster for Shenyang region,but forecast service had poor effect without forecasting thunderstorm weather accurately.In our paper,the reasons for missing report of this thunderstorm weather were analyzed,and analysis on thunderstorm potential was carried out by means of mesoscale analysis technique,providing technical index and vantage point for the prediction of thunderstorm potential.The results showed that the reasons for missing report of this weather process were as follows:surface temperature at prophase was constantly lower going against the development of convective weather;the interpreting and analyzing ability of numerical forecast product should be improved;the forecast result of T639 model was better than that of Japanese numerical forecast;the study and application of mesoscale analysis technique should be strengthened,and this service was formally developed after thunderstorm weather on June 1,2010.展开更多
The transparent open box(TOB)learning network algorithm offers an alternative approach to the lack of transparency provided by most machine-learning algorithms.It provides the exact calculations and relationships amon...The transparent open box(TOB)learning network algorithm offers an alternative approach to the lack of transparency provided by most machine-learning algorithms.It provides the exact calculations and relationships among the underlying input variables of the datasets to which it is applied.It also has the capability to achieve credible and auditable levels of prediction accuracy to complex,non-linear datasets,typical of those encountered in the oil and gas sector,highlighting the potential for underfitting and overfitting.The algorithm is applied here to predict bubble-point pressure from a published PVT dataset of 166 data records involving four easy-tomeasure variables(reservoir temperature,gas-oil ratio,oil gravity,gas density relative to air)with uneven,and in parts,sparse data coverage.The TOB network demonstrates high-prediction accuracy for this complex system,although it predictions applied to the full dataset are outperformed by an artificial neural network(ANN).However,the performance of the TOB algorithm reveals the risk of overfitting in the sparse areas of the dataset and achieves a prediction performance that matches the ANN algorithm where the underlying data population is adequate.The high levels of transparency and its inhibitions to overfitting enable the TOB learning network to provide complementary information about the underlying dataset to that provided by traditional machine learning algorithms.This makes them suitable for application in parallel with neural-network algorithms,to overcome their black-box tendencies,and for benchmarking the prediction performance of other machine learning algorithms.展开更多
基金Project Funded by Chongqing Changjiang Electrical Appliances Industries Group Co.,Ltd
文摘In order to forecast projectile impact points quickly and accurately,aprojectile impact point prediction method based on generalized regression neural network(GRNN)is presented.Firstly,the model of GRNN forecasting impact point is established;secondly,the particle swarm algorithm(PSD)is used to optimize the smooth factor in the prediction model and then the optimal GRNN impact point prediction model is obtained.Finally,the numerical simulation of this prediction model is carried out.Simulation results show that the maximum range error is no more than 40 m,and the lateral deviation error is less than0.2m.The average time of impact point prediction is 6.645 ms,which is 1 300.623 ms less than that of numerical integration method.Therefore,it is feasible and effective for the proposed method to forecast projectile impact points,and thus it can provide a theoretical reference for practical engineering applications.
文摘Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also need to modulate the lateral force or trajectory (perpendicular to the vertical plane of fire direction). Therefore, the structure of control cabin of two-dimensional trajectory correction projectile (TDTCP) is more complicated than that of one-dimensional trajectory correction projectile (ODTCP). To simplify the structure of control cabin of TDTCP and reduce the cost, a scheme of adding a damping disk to the control cabin of ODTCP has been developed recently. The damping disk is unfolded at the right moment during its flight to change the ballistic drift of spin stabilized projectile. For this technical scheme of TDTCP, a fast and accurate impact point prediction method based on extended Kalman filter is presented. An approximate formula for predicting the ballistic drift and trajectory correction quantity is deduced. And the lateral correction capability for different fire angles and its influencing factors are analyzed. All the work is valuable for further research.
基金supported by the National Natural Science Foundation of China (Grant No.62103432)supported by Young Talent fund of University Association for Science and Technology in Shaanxi, China(Grant No.20210108)。
文摘An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic trajectory model is applied to generate training samples,and ablation experiments are conducted to determine the mapping relationship between the flight state and the impact point.At the same time,the impact point coordinates are decoupled to improve the prediction accuracy,and the sigmoid activation function is improved to ameliorate the prediction efficiency.Therefore,an IPP neural network model,which solves the contradiction between the accuracy and the speed of the IPP,is established.In view of the performance deviation of the divert control system,the mapping relationship between the guidance parameters and the impact deviation is analysed based on the variational principle.In addition,a fast iterative model of guidance parameters is designed for reference to the Newton iteration method,which solves the nonlinear strong coupling problem of the guidance parameter solution.Monte Carlo simulation results show that the prediction accuracy of the impact point is high,with a 3 σ prediction error of 4.5 m,and the guidance method is robust,with a 3 σ error of 7.5 m.On the STM32F407 singlechip microcomputer,a single IPP takes about 2.374 ms,and a single guidance solution takes about9.936 ms,which has a good real-time performance and a certain engineering application value.
文摘In modern warfare,unpowered glide munitions,represented by JDAM,are widely used.Accurately predicting the future trajectory of such targets is crucial for intercepting them.This paper proposes a future point prediction method for unpowered gliding targets based on attitude computation.By estimating the current state of the target,we derive the target’s attitude coordinate system.Subsequently,the paper analyzes the forces acting on the target and updates the state transition matrix,ultimately calculating the future position of the target.Experimental results show that,compared to traditional methods,this approach improves the accuracy of future point predictions by 9%to 45%.
基金supported by the National Key Research and Development Program of China (No.2018YFB1702401)National Natural Science Foundation of China (Grant No.51975576,51475463).
文摘Aiming at the difficulty of mining fault prognosis starting points and constructing prognostic models for remaining useful life(RUL)prediction of rolling bearings,a RUL prediction method is proposed based on health indicator(HI)extraction and trajectory-enhanced particle filter(TE-PF).By extracting a HI that can accurately track the trending of bearing degradation and combining it with the early fault enhancement technology,early abnormal sample nodes can be mined to provide more samples with fault information for the construction and training of subsequent prediction models.Aiming at the problem that traditional degradation rate models based on PF are vulnerable to HI mutations,a TE-PF prediction method is proposed based on comprehensive utilization of historical degradation information to timely modify prediction model parameters.Results from a rolling bearing prognostic study show that prediction starting points can be accurately detected and a reasonable prediction model can be conveniently constructed by the RUL prediction method based on HI amplitude abnormal detection and TE-PF.Furthermore,aiming at the RUL prediction problem under the condition of HI mutation,RUL prediction with probability and statistics characteristics under a confidence interval can be obtained based on the method proposed.
基金supported by the National Natural Science Foundation of China(No.62173211,62122041,62333013)the Natural Science Foundation of Shandong Province(No.ZR2021JQ25)which are gratefully acknowledged.
文摘Analyzing capacity degradation characteristics and accurately predicting the knee point of capacity are crucial for the safety management of lithium-ion batteries(LIBs).However,the degradation mechanism of LIBs is complex.A key but challenging problem is how to clarify the degradation mechanism and predict the knee point.According to the external characteristics such as capacity decline gradievnt and the peak value of increment capacity curve(IC curve),the capacity degradation can be divided into four stages,including initial decline stage,slow decline stage,transition stage and high-speed decline stage.The degradation mechanism of LIBs is compared from the longitudinal and horizontal aspects,respectively.Among them,the battery usage from the initial stage to the end of life(EOL)is longitudinal analysis.The battery under different conditions,such as charging and discharging,different discharge rate,different cathode material degradation mechanism is horizontal analysis.Moreover,a method based on neural network is proposed to predict the knee point.Two features are used to predict the capacity and cycle of the knee point,which are the gradient of the capacity degradation curve and the difference of the IC curve with the maximum correlation.The experimental results show that a two-dimensional surface can be obtained using only the first 100 cycles,which can provide a reference for the position of the knee point accurately prediction.
文摘The first thunderstorm weather appeared in southern Shenyang on May 2,2010 and did not bring about severe lightning disaster for Shenyang region,but forecast service had poor effect without forecasting thunderstorm weather accurately.In our paper,the reasons for missing report of this thunderstorm weather were analyzed,and analysis on thunderstorm potential was carried out by means of mesoscale analysis technique,providing technical index and vantage point for the prediction of thunderstorm potential.The results showed that the reasons for missing report of this weather process were as follows:surface temperature at prophase was constantly lower going against the development of convective weather;the interpreting and analyzing ability of numerical forecast product should be improved;the forecast result of T639 model was better than that of Japanese numerical forecast;the study and application of mesoscale analysis technique should be strengthened,and this service was formally developed after thunderstorm weather on June 1,2010.
文摘The transparent open box(TOB)learning network algorithm offers an alternative approach to the lack of transparency provided by most machine-learning algorithms.It provides the exact calculations and relationships among the underlying input variables of the datasets to which it is applied.It also has the capability to achieve credible and auditable levels of prediction accuracy to complex,non-linear datasets,typical of those encountered in the oil and gas sector,highlighting the potential for underfitting and overfitting.The algorithm is applied here to predict bubble-point pressure from a published PVT dataset of 166 data records involving four easy-tomeasure variables(reservoir temperature,gas-oil ratio,oil gravity,gas density relative to air)with uneven,and in parts,sparse data coverage.The TOB network demonstrates high-prediction accuracy for this complex system,although it predictions applied to the full dataset are outperformed by an artificial neural network(ANN).However,the performance of the TOB algorithm reveals the risk of overfitting in the sparse areas of the dataset and achieves a prediction performance that matches the ANN algorithm where the underlying data population is adequate.The high levels of transparency and its inhibitions to overfitting enable the TOB learning network to provide complementary information about the underlying dataset to that provided by traditional machine learning algorithms.This makes them suitable for application in parallel with neural-network algorithms,to overcome their black-box tendencies,and for benchmarking the prediction performance of other machine learning algorithms.