期刊文献+
共找到564篇文章
< 1 2 29 >
每页显示 20 50 100
Model Predictive Controller Design for the Dynamic Positioning System of a Semi-submersible Platform 被引量:3
1
作者 Hongli Chen Lei Wan Fang Wang Guocheng Zhang 《Journal of Marine Science and Application》 2012年第3期361-367,共7页
This paper researches how to apply the advanced control technology of model predictive control (MPC) to the design of the dynamic positioning system (DPS) of a semi-submersible platform. First, a linear low-freque... This paper researches how to apply the advanced control technology of model predictive control (MPC) to the design of the dynamic positioning system (DPS) of a semi-submersible platform. First, a linear low-frequency motion model with three degrees of freedom was established in the context of a semi-submersible platform. Second, a model predictive controller was designed based on a model which took the constraints of the system into account. Third, simulation was carried out to demonstrate the feasibility of the controller. The results show that the model predictive controller has good performance and good at dealing with the constraints or the system. 展开更多
关键词 dynamic positioning system model predictive controller constraints handling semi-submersibleplatform low-frequency motion model
下载PDF
Single Phase Induction Motor Drive with Restrained Speed and Torque Ripples Using Neural Network Predictive Controller
2
作者 S. Saravanan K. Geetha 《Circuits and Systems》 2016年第11期3670-3684,共15页
In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of ... In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of DC drives. Precise control of drives is the main attribute in industries to optimize the performance and to increase its production rate. In motion control, the major considerations are the torque and speed ripples. Design of controllers has become increasingly complex to such systems for better management of energy and raw materials to attain optimal performance. Meager parameter appraisal results are unsuitable, leading to unstable operation. The rapid intensification of digital computer revolutionizes to practice precise control and allows implementation of advanced control strategy to extremely multifaceted systems. To solve complex control problems, model predictive control is an authoritative scheme, which exploits an explicit model of the process to be controlled. This paper presents a predictive control strategy by a neural network predictive controller based single phase induction motor drive to minimize the speed and torque ripples. The proposed method exhibits better performance than the conventional controller and validity of the proposed method is verified by the simulation results using MATLAB software. 展开更多
关键词 Dynamic Model Low Torque Ripples Neural Model Neural Network predictive controller Unstable Operation Single Phase Induction Motor Variable Speed Drives
下载PDF
ON THE ROBUSTNESS OF A GENERALIZED PREDICTIVE CONTROLLER 被引量:1
3
作者 CHEN ZENGQIANG AND YUAN ZHUZHI 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1995年第4期449-456,共8页
In this paper, we present a quantitative analysis of the robustness of a generalized predictive controller. The result of stability analysis shows that, under a specific bounded modelling error, the closed-loop system... In this paper, we present a quantitative analysis of the robustness of a generalized predictive controller. The result of stability analysis shows that, under a specific bounded modelling error, the closed-loop system is BIBO stable in the presence of unmodelled dynamics. 展开更多
关键词 Robust control generalized predictive control STATE-SPACE ROBUSTNESS stability.
下载PDF
On the stability of two-step predictive controller based on state observer
4
作者 Cao Muliang Wu Zhiming +1 位作者 Ding Baocang Wang Chuanxu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期132-137,共6页
For input saturated Hammerstein systems, the two-step predictive control strategy is adopted. The first step calculates the desired intermediate variable applying unconstrained linear modal and predictive control. The... For input saturated Hammerstein systems, the two-step predictive control strategy is adopted. The first step calculates the desired intermediate variable applying unconstrained linear modal and predictive control. The second step obtains the real-time control action by solving algebraic equation and desaturation. The case of immeasurable state is considered where the observer gain matrix is solved by Sylvester equation. The sufficient closed-loop stability condition is given and the designing and tuning algorithm for the domain of attraction is proposed. The theoretical results are validated by an example. 展开更多
关键词 input nonlinearity two-step predictive control state observer STABILITY domain of attraction
下载PDF
Global Convergence of Adaptive Generalized Predictive Controller Based on Least Squares Algorithm
5
作者 张兴会 陈增强 袁著祉 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第4期39-48,共10页
Some papers on stochastic adaptive control schemes have established convergence algorithm using a least-squares parameters. With the popular application of GPC, global convergence has become a key problem in automatic... Some papers on stochastic adaptive control schemes have established convergence algorithm using a least-squares parameters. With the popular application of GPC, global convergence has become a key problem in automatic control theory. However, now global convergence of GPC has not been established for algorithms in computing a least squares iteration. A generalized model of adaptive generalized predictive control is presented. The global convergebce is also given on the basis of estimating the parameters of GPC by least squares algorithm. 展开更多
关键词 adaptive control generalized predictive control generalized model global convergence.
下载PDF
Model-based predictive controller design for a class of nonlinear networked systems with communication delays and data loss
6
作者 安宝冉 刘国平 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第8期211-216,共6页
This paper discusses the model-based predictive controller design of networked nonlinear systems with communica- tion delay and data loss. Based on the analysis of the closed-loop networked predictive control systems,... This paper discusses the model-based predictive controller design of networked nonlinear systems with communica- tion delay and data loss. Based on the analysis of the closed-loop networked predictive control systems, the model-based networked predictive control strategy can compensate for communication delay and data loss in an active way. The designed model-based predictive controller can also guarantee the stability of the closed-loop networked system. The simulation re- suits demonstrate the feasibility and efficacy of the proposed model-based predictive controller design scheme. 展开更多
关键词 communication delays data loss model-based networked predictive control
下载PDF
Optimal feedback scheduling of model predictive controllers
7
作者 Pingfang ZHOU Jianying XIE Xiaolong DENG 《控制理论与应用(英文版)》 EI 2006年第2期175-180,共6页
Model predictive control (MPC) could not be reliably applied to real-time control systems because its computation time is not well defined. Implemented as anytime algorithm, MPC task allows computation time to be tr... Model predictive control (MPC) could not be reliably applied to real-time control systems because its computation time is not well defined. Implemented as anytime algorithm, MPC task allows computation time to be traded for control performance, thus obtaining the predictability in time. Optimal feedback scheduling (FS-CBS) of a set of MPC tasks is presented to maximize the global control performance subject to limited processor time. Each MPC task is assigned with a constant bandwidth server (CBS), whose reserved processor time is adjusted dynamically. The constraints in the FS- CBS guarantee scheduler of the total task set and stability of each component. The FS-CBS is shown robust against the variation of execution time of MPC tasks at runtime. Simulation results illustrate its effectiveness. 展开更多
关键词 Real-time control system SCHEDULING Model predictive control
下载PDF
On-Line Tuning Scheme for the Generalized Predictive Controller via Simulation Optimization
8
作者 Li Shaoyuan Institute of Automation, Shanghai Jiaotong University, Shanghai 200030, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第2期57-62,共6页
Predictive control has recently received much attention from researchers. However a challenging problem to be solved is how to tune the parameters of the predictive controller. So far, only few guidelines related to t... Predictive control has recently received much attention from researchers. However a challenging problem to be solved is how to tune the parameters of the predictive controller. So far, only few guidelines related to tuning of the parameters of predictive controllers have been provided in literature. In practice, these parameters are generally off-line determined by the designers' experience. From the point of view of process control, it is difficult to find out the optimal parameters for the control system based on a single quadratic performance index, which is used in the standard predictive control algorithm. The fuzzy decision-making function is investigated in this paper. Firstly, M control actions are achieved by unconstrained predictive control algorithm, and fuzzy goals and fuzzy constraints are then calculated and the global satisfaction degree is obtained by fuzzy inference. Moreover, the weighting coefficient λ in the cost function is tuned using simulation optimization according to the fuzzy criteria. 展开更多
关键词 predictive control Simulation optimization Fuzzy decision-making.
下载PDF
Nonlinear Model Predictive Controller for Compensations of Single Line-to-ground Fault in Resonant Grounded Power Distribution Networks
9
作者 Warnakulasuriya Sonal Prashenajith Fernando Mostafa Barzegar-Kalashani +2 位作者 Md Apel Mahmud Shama Naz Islam Nasser Hossenzadeh 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第4期1113-1125,共13页
An nonlinear model predictive controller(NMPC)is proposed in this paper for compensations of single line-to-ground(SLG)faults in resonant grounded power distribution networks(RGPDNs),which reduces the likelihood of po... An nonlinear model predictive controller(NMPC)is proposed in this paper for compensations of single line-to-ground(SLG)faults in resonant grounded power distribution networks(RGPDNs),which reduces the likelihood of power line bushfire due to electric faults.Residual current compensation(RCC)inverters with arc suppression coils(ASCs)in RGPDNs are controlled using the proposed NMPC to provide appropriate compensations during SLG faults.The proposed NMPC is incorporated with the estimation of ASC inductance,where the estimation is carried out based on voltage and current measurements from the neutral point of the power distribution network.The compensation scheme is developed in the discrete time using the equivalent circuit of RGPDNs.The proposed NMPC for RCC inverters ensures that the desired current is injected into the neutral point during SLG faults,which is verified through both simulations and control hardware-in-the-loop(CHIL)validations.Comparative results are also presented against an integral sliding mode controller(ISMC)by demon-strating the capability of power line bushfire mitigation. 展开更多
关键词 Fault current phase voltage nonlinear model predictive controller(NMPC) parameter adaptation parametric uncertainty power line bushfire
原文传递
Hybrid Dynamic Variables-Dependent Event-Triggered Fuzzy Model Predictive Control 被引量:1
10
作者 Xiongbo Wan Chaoling Zhang +2 位作者 Fan Wei Chuan-Ke Zhang Min Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期723-733,共11页
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ... This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance. 展开更多
关键词 Dynamic event-triggered mechanism(DETM) hybrid dynamic variables model predictive control(MPC) robust positive invariant(RPI)set T-S fuzzy systems
下载PDF
Model Predictive Control Strategy of Multi-Port Interline DC Power Flow Controller
11
作者 He Wang Xiangsheng Xu +1 位作者 Guanye Shen Bian Jing 《Energy Engineering》 EI 2023年第10期2251-2272,共22页
There are issues with flexible DC transmission system such as a lack of control freedom over power flow.In order to tackle these issues,a DC power flow controller(DCPFC)is incorporated into a multi-terminal,flexible D... There are issues with flexible DC transmission system such as a lack of control freedom over power flow.In order to tackle these issues,a DC power flow controller(DCPFC)is incorporated into a multi-terminal,flexible DC power grid.In recent years,a multi-port DC power flow controller based on a modular multi-level converter has become a focal point of research due to its simple structure and robust scalability.This work proposes a model predictive control(MPC)strategy for multi-port interline DC power flow controllers in order to improve their steady-state dynamic performance.Initially,the mathematical model of a multi-terminal DC power grid with a multi-port interline DC power flow controller is developed,and the relationship between each regulated variable and control variable is determined;The power flow controller is then discretized,and the cost function and weight factor are built with numerous control objectives.Sub module sorting method and nearest level approximation modulation regulate the power flow controller;Lastly,theMATLAB/Simulink simulation platformis used to verify the correctness of the establishedmathematicalmodel and the control performance of the suggestedMPC strategy.Finally,it is demonstrated that the control strategy possesses the benefits of robust dynamic performance,multiobjective control,and a simple structure. 展开更多
关键词 DC power flow controller model predictive control modular multi-level converter control strategy dynamic performance
下载PDF
Real-Time Co-optimization of Gear Shifting and Engine Torque for Predictive Cruise Control of Heavy-Duty Trucks
12
作者 Hongqing Chu Xiaoxiang Na +4 位作者 Huan Liu Yuhai Wang Zhuo Yang Lin Zhang Hong Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期294-317,共24页
Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a rea... Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a real-time implementable PCC,which simultaneously optimizes engine torque and gear shifting,is proposed for heavy-duty trucks.To minimize fuel consumption,the problem of the PCC is formulated as a nonlinear model predictive control(MPC),in which the upcoming road elevation information is used.Finding the solution of the nonlinear MPC is time consuming;thus,a real-time implementable solver is developed based on Pontryagin’s maximum principle and indirect shooting method.Dynamic programming(DP)algorithm,as a global optimization algorithm,is used as a performance benchmark for the proposed solver.Simulation,hardware-in-the-loop and real-truck experiments are conducted to verify the performance of the proposed controller.The results demonstrate that the MPC-based solution performs nearly as well as the DP-based solution,with less than 1%deviation for testing roads.Moreover,the proposed co-optimization controller is implementable in a real-truck,and the proposed MPC-based PCC algorithm achieves a fuel-saving rate of 7.9%without compromising the truck’s travel time. 展开更多
关键词 Heavy-duty truck predictive cruise control Model predictive control Pontryagin’s maximum principle Real-truck implementation
下载PDF
Uncertainty and disturbance estimator-based model predictive control for wet flue gas desulphurization system
13
作者 Shan Liu Wenqi Zhong +2 位作者 Li Sun Xi Chen Rafal Madonski 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期182-194,共13页
Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanis... Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanisms and severe disturbances,which make for it difficult to achieve certain practically relevant control goals including emission and economic performances as well as system robustness.To address these challenges,a new robust control scheme based on uncertainty and disturbance estimator(UDE)and model predictive control(MPC)is proposed in this paper.The UDE is used to estimate and dynamically compensate acting disturbances,whereas MPC is deployed for optimal feedback regulation of the resultant dynamics.By viewing the system nonlinearities and unknown dynamics as disturbances,the proposed control framework allows to locally treat the considered nonlinear plant as a linear one.The obtained simulation results confirm that the utilization of UDE makes the tracking error negligibly small,even in the presence of unmodeled dynamics.In the conducted comparison study,the introduced control scheme outperforms both the standard MPC and PID(proportional-integral-derivative)control strategies in terms of transient performance and robustness.Furthermore,the results reveal that a lowpass-filter time constant has a significant effect on the robustness and the convergence range of the tracking error. 展开更多
关键词 Desulphurization system Disturbance rejection Model predictive control Uncertainty and disturbance estimator Nonlinear system
下载PDF
Path Tracking Controller Design of Automated Parking Systems via NMPC with an Instructible Solution
14
作者 Liang Chen Zhaobo Qin +2 位作者 Manjiang Hu Yougang Bian Xiaoyan Peng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期353-367,共15页
Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking acc... Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future. 展开更多
关键词 Automated parking Path tracking controller Nonlinear model predictive control Monte Carlo analysis
下载PDF
Finite-Time Stabilization for Constrained Discrete-time Systems by Using Model Predictive Control
15
作者 Bing Zhu Xiaozhuoer Yuan +1 位作者 Li Dai Zhiwen Qiang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1656-1666,共11页
In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guar... In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guarantees the finite-time convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closed-loop system.Initial feasibility can be improved via augmentation. The finite-time convergence of the proposed MPC is proved theoretically,and is supported by simulation examples. 展开更多
关键词 CONSTRAINTS deadbeat control finite-time stabilization model predictive control(MPC)
下载PDF
Autonomous Vehicle Platoons In Urban Road Networks:A Joint Distributed Reinforcement Learning and Model Predictive Control Approach
16
作者 Luigi D’Alfonso Francesco Giannini +3 位作者 Giuseppe Franzè Giuseppe Fedele Francesco Pupo Giancarlo Fortino 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期141-156,共16页
In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory... In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors. 展开更多
关键词 Distributed model predictive control distributed reinforcement learning routing decisions urban road networks
下载PDF
Enhancing Safety in Autonomous Vehicle Navigation:An Optimized Path Planning Approach Leveraging Model Predictive Control
17
作者 Shih-Lin Lin Bo-Chen Lin 《Computers, Materials & Continua》 SCIE EI 2024年第9期3555-3572,共18页
This paper explores the application of Model Predictive Control(MPC)to enhance safety and efficiency in autonomous vehicle(AV)navigation through optimized path planning.The evolution of AV technology has progressed ra... This paper explores the application of Model Predictive Control(MPC)to enhance safety and efficiency in autonomous vehicle(AV)navigation through optimized path planning.The evolution of AV technology has progressed rapidly,moving from basic driver-assistance systems(Level 1)to fully autonomous capabilities(Level 5).Central to this advancement are two key functionalities:Lane-Change Maneuvers(LCM)and Adaptive Cruise Control(ACC).In this study,a detailed simulation environment is created to replicate the road network between Nantun andWuri on National Freeway No.1 in Taiwan.The MPC controller is deployed to optimize vehicle trajectories,ensuring safe and efficient navigation.Simulated onboard sensors,including vehicle cameras and millimeterwave radar,are used to detect and respond to dynamic changes in the surrounding environment,enabling real-time decision-making for LCM and ACC.The simulation resultshighlight the superiority of the MPC-based approach in maintaining safe distances,executing controlled lane changes,and optimizing fuel efficiency.Specifically,the MPC controller effectively manages collision avoidance,reduces travel time,and contributes to smoother traffic flow compared to traditional path planning methods.These findings underscore the potential of MPC to enhance the reliability and safety of autonomous driving in complex traffic scenarios.Future research will focus on validating these results through real-world testing,addressing computational challenges for real-time implementation,and exploring the adaptability of MPC under various environmental conditions.This study provides a significant step towards achieving safer and more efficient autonomous vehicle navigation,paving the way for broader adoption of MPC in AV systems. 展开更多
关键词 Autonomous driving model predictive control(MPC) lane change maneuver(LCM) adaptive cruise control(ACC)
下载PDF
Multi-Time Scale Optimal Scheduling of a Photovoltaic Energy Storage Building System Based on Model Predictive Control
18
作者 Ximin Cao Xinglong Chen +2 位作者 He Huang Yanchi Zhang Qifan Huang 《Energy Engineering》 EI 2024年第4期1067-1089,共23页
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ... Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance. 展开更多
关键词 Load optimization model predictive control multi-time scale optimal scheduling photovoltaic consumption photovoltaic energy storage building
下载PDF
Multi-Time Scale Operation and Simulation Strategy of the Park Based on Model Predictive Control
19
作者 Jun Zhao Chaoying Yang +1 位作者 Ran Li Jinge Song 《Energy Engineering》 EI 2024年第3期747-767,共21页
Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve... Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve the expected economy.This paper constructs an operating simulation model of the park power grid operation considering demand response and proposes a multi-time scale operating simulation method that combines day-ahead optimization and model predictive control(MPC).In the day-ahead stage,an operating simulation plan that comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time scale of 15 min.In order to cope with power fluctuations of photovoltaic,wind turbine and conventional load,MPC is used to track and roll correct the day-ahead operating simulation plan in the intra-day stage to meet the actual operating operation status of the park.Finally,the validity and economy of the operating simulation strategy are verified through the analysis of arithmetic examples. 展开更多
关键词 Demand response model predictive control multiple time scales operating simulation
下载PDF
Disturbance rejection tube model predictive levitation control of maglev trains
20
作者 Yirui Han Xiuming Yao Yu Yang 《High-Speed Railway》 2024年第1期57-63,共7页
Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fa... Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fast response and security.In this paper,we propose a Disturbance-Observe-based Tube Model Predictive Levitation Control(DO-TMPLC)scheme combined with a feedback linearization strategy for the levitation system.The proposed strategy incorporates state constraints and control input constraints,i.e.,the air gap,the vertical velocity,and the current applied to the coil.A feedback linearization strategy is used to cancel the nonlinearity of the tracking error system.Then,a disturbance observer is implemented to actively compensate for disturbances while a TMPLC controller is employed to alleviate the remaining disturbances.Furthermore,we analyze the recursive feasibility and input-to-state stability of the closed-loop system.The simulation results indicate the efficacy of the proposed control strategy. 展开更多
关键词 Maglev trains Levitation system Constrained control Disturbance observer Model predictive control
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部