The experimental research on refining slag systems for ultra-low sulphur steel was carried out in a 10 kg induction furnace.It was proved that sulphur element in molten steel can be removed to less than 5×10^(-6)...The experimental research on refining slag systems for ultra-low sulphur steel was carried out in a 10 kg induction furnace.It was proved that sulphur element in molten steel can be removed to less than 5×10^(-6) by adding CaO-Al_2O_3-SiO_2-MgO-CaF_2 slag on the surface of molten steel and feeding CaO-BaO-CaF2 wire into molten steel.And L_s,which is the coefficient of sulphur between slag and molten steel,that is ω(s)/ω[s],increases by increasing I(I = ωBaO/ωCaO).When I=5/3,L_s can be up to its maximum of 633.The CaSi is effective for deep desulphurization,especially when it is added to the slag of wire feeding.展开更多
The foaming indexes of a group of refining slag were measured. The refining slag with better foaming ability was chosen,its composition (mass frachon in %) is CaO, 53.25, SiO2, 17.75, MgO, 9; Al2O3, 15 and CaF2, 5. Th...The foaming indexes of a group of refining slag were measured. The refining slag with better foaming ability was chosen,its composition (mass frachon in %) is CaO, 53.25, SiO2, 17.75, MgO, 9; Al2O3, 15 and CaF2, 5. The relationship between slag foaming index and physical properties of the slag was obtained by dimensional analysis, and the expression indicates that viscosity of slag is the most important factor which influences foamng index. The influence sequence of slap composition on foaming index was also obtained as follows: CaF2→MgO→Al2O3→ B (CaO/SiO2).展开更多
According to the coexistence theory of slag structure melts, the oxidizing capability of the refining slag CaO-MgO-FeO- A12O3SiO2 is studied and the relationship between the mass action concentration of FeO (NFeO) and...According to the coexistence theory of slag structure melts, the oxidizing capability of the refining slag CaO-MgO-FeO- A12O3SiO2 is studied and the relationship between the mass action concentration of FeO (NFeO) and the activity of FetO (αFetO) for this slag is found to be as NFeo=0.656 1 αFetO. Furthermore, the calculating model of oxidizing capability of the refining slag BaO-CaO-MgO- FeOA12O3-SiO2 is established. A satisfactory result is obtained when using the above oxidizing capability relationship to calculate the desulphurizing capability of such refining BaO-slags.展开更多
Recently, large sized CaO-Alz 03 inclusions with low melting temperature have been the main reason for lowering mechanical properties of high strength low alloy (HSLA) steel plates. New philosophy, i.e. refining by ...Recently, large sized CaO-Alz 03 inclusions with low melting temperature have been the main reason for lowering mechanical properties of high strength low alloy (HSLA) steel plates. New philosophy, i.e. refining by top slag with relatively low basicity and Al2O3 content, was proposed to control such kind of inclusions. Firstly, the characteristics of refining slag, such as component activities and sulphide capacity (Cs) of CaO-Al2O3-SiO2-MgO slag, were studied through thermodynamic calculation. Then, slag-metal equilibrium experiments were carried out in laboratory to investigate the exact chemical composition of refining slag together with thermodynamic analysis. Finally, industrial trials were done to verify the desulphurization ability and inclusions control in steel refined by the new slag. Thermodynamic calculations indicated that the slags with basicity of 3.5 and Al2O3 content of 200/oo and basicity of 5.0 and Al2O3 content of 20 % or 25 % have high values of CaO activity, sulphide capacity and ratio of MgO activity to Al2O3 activity. Laboratory equilibrium experiments showed that the slag with basicity of about 4.5 and A12 03 content of about 20% is helpful for increasing the melting temperature of inclusions in steel. After introducing such kind of refining slag in industrial trials, the sulphur content in eight heats of steel is below 20 ×l0-6 , which meets the requirement of HSLA steel, and most inclusions distribute in relatively high melting zone (≥1773 K) of CaO- Al2O3-MgO(-SiO2) quasi-ternary diagram. New philosophy of top refining slag is feasible to control low melting point inclusions of CaO-Al2O3 system in HSLA steel.展开更多
基金Item Sponsored by National Key Fundamental Research Development Project of China(G1998061500)
文摘The experimental research on refining slag systems for ultra-low sulphur steel was carried out in a 10 kg induction furnace.It was proved that sulphur element in molten steel can be removed to less than 5×10^(-6) by adding CaO-Al_2O_3-SiO_2-MgO-CaF_2 slag on the surface of molten steel and feeding CaO-BaO-CaF2 wire into molten steel.And L_s,which is the coefficient of sulphur between slag and molten steel,that is ω(s)/ω[s],increases by increasing I(I = ωBaO/ωCaO).When I=5/3,L_s can be up to its maximum of 633.The CaSi is effective for deep desulphurization,especially when it is added to the slag of wire feeding.
文摘The foaming indexes of a group of refining slag were measured. The refining slag with better foaming ability was chosen,its composition (mass frachon in %) is CaO, 53.25, SiO2, 17.75, MgO, 9; Al2O3, 15 and CaF2, 5. The relationship between slag foaming index and physical properties of the slag was obtained by dimensional analysis, and the expression indicates that viscosity of slag is the most important factor which influences foamng index. The influence sequence of slap composition on foaming index was also obtained as follows: CaF2→MgO→Al2O3→ B (CaO/SiO2).
基金The authors thank for the instrUction of Prof. Jian Zhang of the University of Science and Technology Beliing and the financia
文摘According to the coexistence theory of slag structure melts, the oxidizing capability of the refining slag CaO-MgO-FeO- A12O3SiO2 is studied and the relationship between the mass action concentration of FeO (NFeO) and the activity of FetO (αFetO) for this slag is found to be as NFeo=0.656 1 αFetO. Furthermore, the calculating model of oxidizing capability of the refining slag BaO-CaO-MgO- FeOA12O3-SiO2 is established. A satisfactory result is obtained when using the above oxidizing capability relationship to calculate the desulphurizing capability of such refining BaO-slags.
基金Item Sponsored by National Basic Research Program of China(2010CB630806)National Natural Science Foundation of CHina(51404020)State Key Laboratory of Advanced Metallurgy(USTB)of China(41603015)
文摘Recently, large sized CaO-Alz 03 inclusions with low melting temperature have been the main reason for lowering mechanical properties of high strength low alloy (HSLA) steel plates. New philosophy, i.e. refining by top slag with relatively low basicity and Al2O3 content, was proposed to control such kind of inclusions. Firstly, the characteristics of refining slag, such as component activities and sulphide capacity (Cs) of CaO-Al2O3-SiO2-MgO slag, were studied through thermodynamic calculation. Then, slag-metal equilibrium experiments were carried out in laboratory to investigate the exact chemical composition of refining slag together with thermodynamic analysis. Finally, industrial trials were done to verify the desulphurization ability and inclusions control in steel refined by the new slag. Thermodynamic calculations indicated that the slags with basicity of 3.5 and Al2O3 content of 200/oo and basicity of 5.0 and Al2O3 content of 20 % or 25 % have high values of CaO activity, sulphide capacity and ratio of MgO activity to Al2O3 activity. Laboratory equilibrium experiments showed that the slag with basicity of about 4.5 and A12 03 content of about 20% is helpful for increasing the melting temperature of inclusions in steel. After introducing such kind of refining slag in industrial trials, the sulphur content in eight heats of steel is below 20 ×l0-6 , which meets the requirement of HSLA steel, and most inclusions distribute in relatively high melting zone (≥1773 K) of CaO- Al2O3-MgO(-SiO2) quasi-ternary diagram. New philosophy of top refining slag is feasible to control low melting point inclusions of CaO-Al2O3 system in HSLA steel.