The combination of electrospinning and hot pressing,namely the electrospinning-hot pressing technique(EHPT),is an efficient and convenient method for preparing nanofibrous composite materials with good energy storage ...The combination of electrospinning and hot pressing,namely the electrospinning-hot pressing technique(EHPT),is an efficient and convenient method for preparing nanofibrous composite materials with good energy storage performance.The emerging composite membrane prepared by EHPT,which exhibits the advantages of large surface area,controllable morphology,and compact structure,has attracted immense attention.In this paper,the conduction mechanism of composite membranes in thermal and electrical energy storage and the performance enhancement method based on the fabrication process of EHPT are systematically discussed.Moreover,the state-of-the-art applications of composite membranes in these two fields are introduced.In particular,in the field of thermal energy storage,EHPT-prepared membranes have longitudinal and transverse nanofibers,which generate unique thermal conductivity pathways;also,these nanofibers offer enough space for the filling of functional materials.Moreover,EHPT-prepared membranes are beneficial in thermal management systems,building energy conservation,and electrical energy storage,e.g.,improving the electrochemical properties of the separators as well as their mechanical and thermal stability.The application of electrospinning-hot pressing membranes on capacitors,lithium-ion batteries(LIBs),fuel cells,sodium-ion batteries(SIBs),and hydrogen bromine flow batteries(HBFBs)still requires examination.In the future,EHPT is expected to make the field more exciting through its own technological breakthroughs or be combined with other technologies to produce intelligent materials.展开更多
In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and proper...In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample.展开更多
The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples...The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples subjected to IDED under 1050℃ preheating with and without hot isostatic pressing(HIP,1190℃,105 MPa,and 3 h).Results show that the as-deposited sample mainly consisted of epitaxial columnar crystals and inhomogeneously distributed γ’ phases in interdendritic and dendritic core regions.After HIP,grain morphology changed negligibly,whereas the size of the γ’ phase became increasingly even.After further heat treatment(HT,1070℃,2 h + 845℃,24 h),the γ’ phase in the as-deposited and HIPed samples presented a bimodal size distribution,whereas that in the as-deposited sample showed a size that remained uneven.The comparison of tensile properties revealed that the tensile strength and uniform elongation of the HIP + HTed sample increased by 5% and 46%,respectively,due to the synergistic deformation of bimodal γ’phases,especially large cubic γ’ phases.Finally,the relationship between phase transformations and plastic deformations in the IDEDed sample was discussed on the basis of generalized stability theory in terms of the trade-off between thermodynamics and kinetics.展开更多
The Mg-7Gd-4Y-2Zn-0.5Zr alloy chips were successfully recycled through isothermal sintering and equal channel angular pressing(ECAP).The mechanical properties and microstructure evolution of samples during the recycli...The Mg-7Gd-4Y-2Zn-0.5Zr alloy chips were successfully recycled through isothermal sintering and equal channel angular pressing(ECAP).The mechanical properties and microstructure evolution of samples during the recycling process were studied in detail.The eutectic phases in the as-cast alloy transform into long period-stacking ordered(LPSO)phases after homogenization,which can improve the plasticity of the material.After isothermal sintering,the density of the sample is lower than that of the homogenized sample,and oxide films are formed adjacent to the bonding interface of the metal chips.Hence,the plasticity of the sintered sample is poor.Dense samples are fabricated after ECAP.Although the grains are not refined compared to the sintered sample,the microstructure becomes more uniform due to recrystallization.Fiber interdendritic LPSO phase and kinked 14H-LPSO phase are formed in the alloy due to the shear deformation during the ECAP process,which improves the strength and plasticity of the sample significantly.Furthermore,the basal texture is weakened due to the Bc route of the ECAP process,which can increase the Schmid factor of the basal slip system and improve the elongation of the sample.After 2 ECAP passes,the fully densified recycled billet shows superior mechanical properties with an ultimate tensile strength of 307.1 MPa and elongation of 11.1%.展开更多
For samples in the gaseous state at room temperature and ambient pressure,mature technology has been developed to encapsulate them in a diamond anvil cell(DAC).However,the large volume press(LVP)can only treat samples...For samples in the gaseous state at room temperature and ambient pressure,mature technology has been developed to encapsulate them in a diamond anvil cell(DAC).However,the large volume press(LVP)can only treat samples with starting materials in solid or liquid form.We have achieved stable encapsulation and reaction treatment of carbon dioxide in a centimeter sized sample chamber for a long time(over 10 min)under conditions of temperature higher than 1200C and pressure over 5 GPa through the use of integrated low-temperature freezing and rapid compression sealing method for LVP cell assemblies.This technology can also be applied to the packaging of other gaseous or liquid samples,such as ammonia,sulfur dioxide,water,etc.in LVP devices.展开更多
Deformation can change the transition pathway of materials under high pressure,thus significantly affects physical and chemical properties of matters.However,accurate pressure calibration under deformation is challeng...Deformation can change the transition pathway of materials under high pressure,thus significantly affects physical and chemical properties of matters.However,accurate pressure calibration under deformation is challenging and thereby causes relatively large pressure uncertainties in deformation experiments,resulting in the synthesis of complex multiphase materials.Here,pressure generations of three types of deformation assemblies were well calibrated in a Walker-type largevolume press(LVP)by electrical resistance measurements combined with finite element simulations(FESs).Hard Al_(2)O_(3) or diamond pistons in shear and uniaxial deformation assemblies significantly increase the efficiency of pressure generation compared with the conventional quasi-hydrostatic assembly.The uniaxial deformation assembly using flat diamond pistons possesses the highest efficiency in these deformation assemblies.This finding is further confirmed by stress distribution analysis based on FESs.With this deformation assembly,we found shear can effectively promote the transformation of C60 into diamond under high pressure and realized the synthesis of phase-pure diamond at relatively moderate pressure and temperature conditions.The present developed techniques will help improve pressure efficiencies in LVP and explore the new physical and chemical properties of materials under deformation in both science and technology.展开更多
Molasses can serve as a natural adhesive for plywood and particleboard.However,several disadvantages remain,including lower dimensional stability and low bonding strength compared to other adhesives.Therefore,modifica...Molasses can serve as a natural adhesive for plywood and particleboard.However,several disadvantages remain,including lower dimensional stability and low bonding strength compared to other adhesives.Therefore,modifications are needed to use molasses as an adhesive for plywood.This research aims to improve bio-based molasses(MO)adhesive for plywood using citric acid(CA)adhesive.In addition,this research aims to analyze the effect of adding citric acid and to investigate the optimum hot-pressing temperature to produce the best quality plywood.In the first stage,the molasses and citric acid were combined in a ratio of 100:0,75:25,50:50,25:75,0:100 w/w%.Then,the second stage focuses on analyzing the influences of pressing temperature based on an optimum first stage.The research demonstrated that the addition of CA altered the gelation time,solid content,viscosity,and pH of the molasses adhesives.In addition,the thermal properties of molasses adhesives were changed after mixing with citric acid.These phenomena indicate changes in characteristics,such as the curing of adhesive.Overall,the characteristics of plywood showed a steady improvement as the CA ratio increased but revealed a significant decline for the 25:75 MO-CA ratio.By raising the pressing temperature from 180℃ to 200℃,the quality of plywood was effectively improved.The plywood that was bonded using adhesives with a 50:50 MO-CA ratio exhibited superior mechanical properties and improved dimensional stability compared to the plywood bonded solely with MO.Furthermore,the optimal mechanical and physical properties resulted in plywood bonded with a 50:50 MO-CA ratio when subjected to a pressing temperature of 200℃.The Thermal and FTIR measurements revealed that CA established ester bonds with both the MO and wood veneers.In conclusion,the mechanical characteristics of plywood were improved,while maintaining its excellent dimensional stability.展开更多
Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded to...Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually.展开更多
This work investigated the effect of Cr and Si on the mechanical properties and oxidation resistance of press hardened steel.Results indicated that the microstructure of the Cr-Si micro-alloyed press hardened steel co...This work investigated the effect of Cr and Si on the mechanical properties and oxidation resistance of press hardened steel.Results indicated that the microstructure of the Cr-Si micro-alloyed press hardened steel consisted of lath martensite,M_(23)C_(6)carbides,and retained austenite.The retained austenite and carbides are responsible for the increase in elongation of the micro-alloyed steel.In addition,after oxidation at 930℃for 5 min,the thickness of the oxide scales on the Cr-Si micro-alloyed press hardened steel is less than 5μm,much thinner than 45.50μm-thick oxide scales on 22MnB5.The oxide scales of the Cr-Si micro-alloyed steel are composed of Fe_(2)O_(3),Fe_(3)O_(4),mixed spinel oxide(FeCr_(2)O_(4)and Fe_(2)SiO_(4)),and amorphous SiO_(2).Adding Cr and Si significantly reduces the thickness of the oxide scales and prevents the generation of the FeO phase.Due to the increase of spinel FeCr_(2)O_(4)and Fe_(2)SiO_(4)phase in the inner oxide scale and the amorphous SiO_(2)close to the substrate,the oxidation resistance of the Cr-Si micro-alloyed press hardened steel is improved.展开更多
This study explores the utilization of various chemometric analytical methods for determining the quality of pressed sesame oil with different adulteration levels of refined sesame oil using UV spectral fingerprints.T...This study explores the utilization of various chemometric analytical methods for determining the quality of pressed sesame oil with different adulteration levels of refined sesame oil using UV spectral fingerprints.The goal of this study was to provide a reliable tool for assessing the quality of sesame oil.The UV spectra of 51 samples of pressed sesame oil and 420 adulterated samples with refined sesame oil were measured in the range of 200-330 nm.Various classification and prediction methods,including linear discrimination analysis(LDA),support vector machines(SVM),soft independent modeling of class analogy(SIMCA),partial least squares regression(PLSR),support vector machine regression(SVR),and back-propagation neural network(BPNN),were employed to analyze the UV spectral data of pressed sesame oil and adulterated sesame oil.The results indicated that SVM outperformed the other classification methods in qualitatively identifying adulterated sesame oil,achieving an accuracy of 96.15%,a sensitivity of 97.87%,and a specificity of 80%.For quantitative analysis,BPNN yielded the best prediction results,with an R^(2) value of 0.99,RMSEP of 2.34%,and RPD value of 10.60(LOD of 8.60%and LOQ of 28.67%).Overall,the developed models exhibited significant potential for rapidly identifying and predicting the quality of sesame oil.展开更多
(Gd,Lu)_(2)O_(3)∶Eu scintillation ceramics have promising applications in the high-energy X-ray imaging.Eu0.1Gd0.6Lu1.3O3 nano-powders with pure phase were prepared from the precursor calcined at 1050℃for 4 h by the...(Gd,Lu)_(2)O_(3)∶Eu scintillation ceramics have promising applications in the high-energy X-ray imaging.Eu0.1Gd0.6Lu1.3O3 nano-powders with pure phase were prepared from the precursor calcined at 1050℃for 4 h by the co-precipitation method.Using the synthesized nano-powders as initial material,Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics were fabri-cated by vacuum pre-sintering at different temperatures for 2 h and hot isostatic pressing(HIP)at 1750℃for 3 h in ar-gon.The influence of pre-sintering temperature on the microstructure,optical and luminescence properties was investi-gated.The Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics pre-sintered at 1625℃for 2 h combined with HIP post-treatment show the high-est in-line transmittance of 75.2%at 611 nm.The photoluminescence(PL)and X-ray excited luminescence(XEL)spectra of the Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)transparent ceramics demonstrate a strong red emission peak at 611 nm due to the^(5)D_(0)→^(7)F_(2) transition of Eu^(3+).The PL,PLE and XEL intensities of the HIP post-treated Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics show a trend of first ascending and then descending with the increase of pre-sintering temperature.The thermally stimulated lumines-cence(TSL)curve of the HIP post-treated Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics presents one high peak at 178 K and two peaks with lower intensities at 253 K and 320 K.The peak at 320 K may be related to oxygen vacancies,and the lumines-cence peak at 178 K is related to defects caused by the valence state changes of Eu^(3+)ions.展开更多
With a view to improving rabbit production performance, a trial on the chemical composition of pineapple press residue (Ananas comosus) and the effect of its incorporation in the ration on rabbit growth performance (O...With a view to improving rabbit production performance, a trial on the chemical composition of pineapple press residue (Ananas comosus) and the effect of its incorporation in the ration on rabbit growth performance (Oryctolagus cuniculus) was carried out at the KUATE Cunicole Farm in Bandjoun, in Western Cameroon. To do this, 36 rabbits of the local breed, aged 53 days with an average weight of 1337 ± 119 g were distributed and randomly assigned to 3 experimental rations corresponding respectively to treatments or batches T0, T1 and T2. The animals in treatment T0 received a ration containing no pineapple press residue, while those in treatments T1 and T2 received a ration containing 20% and 40% pineapple press residue, respectively. These residues were dried and ground for chemical composition analysis. The feed served as well as refusals from the previous day were weighed each morning to assess feed intake. The animals were weighed every 7 days to assess weight performance. At the end of the trial which lasted 7 weeks, the animals were fasted for 24 hours, then sacrificed to evaluate carcass characteristics and the relative weights of some digestive organs. The results of this study showed that pineapple press residues had a high crude fiber content (19.2%) and energy (2500 Kcal/kg DM). Their incorporation had no significant effect on feed intake and feed conversion ratio. The average live weight, weight gain and average daily weight gain of the animals receiving the ration with 20% inclusion of pineapple press residue were comparable to those of the control group and significantly higher than those of animals fed with 40% inclusion of pineapple residue. The highest carcass yields were obtained with rabbits fed 20% pineapple press residue in their ration. The cost of feed for the production of a kilogram live weight of rabbit tends to decrease with the ration incorporated with 20% pineapple press residue. Pineapple press residues constitute a by-product that can be recycled and their incorporation at 20% can increase rabbit growth performance and reduce production costs.展开更多
How time flies!I’m a little sad when I realize that I will graduate from junior high school in a few months.Luckily,I have some wonderful memories.The person who impressed me most was my friend.My English was bad bef...How time flies!I’m a little sad when I realize that I will graduate from junior high school in a few months.Luckily,I have some wonderful memories.The person who impressed me most was my friend.My English was bad before and I felt unhappy about it.So I told it to a girl called Mary,who was good at English.She was willing to help me and made friends with me.She taught me some useful ways to learn English.展开更多
Time flies like an arrow,and time lost never returns.In the past few years of my junior high school life,what impressed me most was running.At first,I didn’t like sports.I thought I was supposed to spend more time on...Time flies like an arrow,and time lost never returns.In the past few years of my junior high school life,what impressed me most was running.At first,I didn’t like sports.I thought I was supposed to spend more time on school work than on exercise.But gradually,I found that running was not only good for my health,but also helped me relieve stress.When I opened my arms and stretched my legs on the playground,I was like a deer running in the field,which made me get a sense of belonging.展开更多
基金supported by the National Natural Science Foundation of China(No.52274252)the Key Science and Technology Project of Changsha City,China(No.kq2102005)+1 种基金the Special Fund for the Construction of Innovative Province in Hunan Province,China(Nos.2020RC3038 and 2022WK4004)the Changsha City Fund for Distinguished and Innovative Young Scholars,China(No.kq1802007).
文摘The combination of electrospinning and hot pressing,namely the electrospinning-hot pressing technique(EHPT),is an efficient and convenient method for preparing nanofibrous composite materials with good energy storage performance.The emerging composite membrane prepared by EHPT,which exhibits the advantages of large surface area,controllable morphology,and compact structure,has attracted immense attention.In this paper,the conduction mechanism of composite membranes in thermal and electrical energy storage and the performance enhancement method based on the fabrication process of EHPT are systematically discussed.Moreover,the state-of-the-art applications of composite membranes in these two fields are introduced.In particular,in the field of thermal energy storage,EHPT-prepared membranes have longitudinal and transverse nanofibers,which generate unique thermal conductivity pathways;also,these nanofibers offer enough space for the filling of functional materials.Moreover,EHPT-prepared membranes are beneficial in thermal management systems,building energy conservation,and electrical energy storage,e.g.,improving the electrochemical properties of the separators as well as their mechanical and thermal stability.The application of electrospinning-hot pressing membranes on capacitors,lithium-ion batteries(LIBs),fuel cells,sodium-ion batteries(SIBs),and hydrogen bromine flow batteries(HBFBs)still requires examination.In the future,EHPT is expected to make the field more exciting through its own technological breakthroughs or be combined with other technologies to produce intelligent materials.
基金Project(U2202255)supported by the National Natural Science Foundation of ChinaProject(2024JJ2076)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(2023Z092)supported by the Key Technology Research Program of Ningbo,China。
文摘In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample.
基金financial support of the National Natural Science Foundation of China(Nos.52130110 and U22A20189)the Research Fund of the State Key Laboratory of Solidification Processing(No.2023-TS-10)。
文摘The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples subjected to IDED under 1050℃ preheating with and without hot isostatic pressing(HIP,1190℃,105 MPa,and 3 h).Results show that the as-deposited sample mainly consisted of epitaxial columnar crystals and inhomogeneously distributed γ’ phases in interdendritic and dendritic core regions.After HIP,grain morphology changed negligibly,whereas the size of the γ’ phase became increasingly even.After further heat treatment(HT,1070℃,2 h + 845℃,24 h),the γ’ phase in the as-deposited and HIPed samples presented a bimodal size distribution,whereas that in the as-deposited sample showed a size that remained uneven.The comparison of tensile properties revealed that the tensile strength and uniform elongation of the HIP + HTed sample increased by 5% and 46%,respectively,due to the synergistic deformation of bimodal γ’phases,especially large cubic γ’ phases.Finally,the relationship between phase transformations and plastic deformations in the IDEDed sample was discussed on the basis of generalized stability theory in terms of the trade-off between thermodynamics and kinetics.
基金supported by the fund of the National Natural Science Foundation of China(51875127,52275322).
文摘The Mg-7Gd-4Y-2Zn-0.5Zr alloy chips were successfully recycled through isothermal sintering and equal channel angular pressing(ECAP).The mechanical properties and microstructure evolution of samples during the recycling process were studied in detail.The eutectic phases in the as-cast alloy transform into long period-stacking ordered(LPSO)phases after homogenization,which can improve the plasticity of the material.After isothermal sintering,the density of the sample is lower than that of the homogenized sample,and oxide films are formed adjacent to the bonding interface of the metal chips.Hence,the plasticity of the sintered sample is poor.Dense samples are fabricated after ECAP.Although the grains are not refined compared to the sintered sample,the microstructure becomes more uniform due to recrystallization.Fiber interdendritic LPSO phase and kinked 14H-LPSO phase are formed in the alloy due to the shear deformation during the ECAP process,which improves the strength and plasticity of the sample significantly.Furthermore,the basal texture is weakened due to the Bc route of the ECAP process,which can increase the Schmid factor of the basal slip system and improve the elongation of the sample.After 2 ECAP passes,the fully densified recycled billet shows superior mechanical properties with an ultimate tensile strength of 307.1 MPa and elongation of 11.1%.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200).
文摘For samples in the gaseous state at room temperature and ambient pressure,mature technology has been developed to encapsulate them in a diamond anvil cell(DAC).However,the large volume press(LVP)can only treat samples with starting materials in solid or liquid form.We have achieved stable encapsulation and reaction treatment of carbon dioxide in a centimeter sized sample chamber for a long time(over 10 min)under conditions of temperature higher than 1200C and pressure over 5 GPa through the use of integrated low-temperature freezing and rapid compression sealing method for LVP cell assemblies.This technology can also be applied to the packaging of other gaseous or liquid samples,such as ammonia,sulfur dioxide,water,etc.in LVP devices.
基金the National Natural Science Foundation of China(Grant Nos.42272041,41902034,52302043,12304015,52302043,and 12011530063)the National Major Science Facility Synergetic Extreme Condition User Facility Achievement Transformation Platform Construction(Grant No.2021FGWCXNLJSKJ01)+2 种基金the China Postdoctoral Science Foundation(Grant Nos.2022M720054 and 2023T160257)the National Key Research and Development Program of China(Grant No.2022YFB3706602)the Jilin Univer-sity High-level Innovation Team Foundation,China(Grant No.2021TD-05).
文摘Deformation can change the transition pathway of materials under high pressure,thus significantly affects physical and chemical properties of matters.However,accurate pressure calibration under deformation is challenging and thereby causes relatively large pressure uncertainties in deformation experiments,resulting in the synthesis of complex multiphase materials.Here,pressure generations of three types of deformation assemblies were well calibrated in a Walker-type largevolume press(LVP)by electrical resistance measurements combined with finite element simulations(FESs).Hard Al_(2)O_(3) or diamond pistons in shear and uniaxial deformation assemblies significantly increase the efficiency of pressure generation compared with the conventional quasi-hydrostatic assembly.The uniaxial deformation assembly using flat diamond pistons possesses the highest efficiency in these deformation assemblies.This finding is further confirmed by stress distribution analysis based on FESs.With this deformation assembly,we found shear can effectively promote the transformation of C60 into diamond under high pressure and realized the synthesis of phase-pure diamond at relatively moderate pressure and temperature conditions.The present developed techniques will help improve pressure efficiencies in LVP and explore the new physical and chemical properties of materials under deformation in both science and technology.
基金funded by Riset dan Inovasi untuk Indonesia Maju(RIIM)National Riset and Innovation Agency(Grant Numbers:4/IV/KS/05/2023 and 13955/IT3/PT.01.03/P/B/2023)Research Program by Research Organization of Nanotechnology and Materials,National Research and Innovation Agency(Grant Number 20/III.10/HK/2024).
文摘Molasses can serve as a natural adhesive for plywood and particleboard.However,several disadvantages remain,including lower dimensional stability and low bonding strength compared to other adhesives.Therefore,modifications are needed to use molasses as an adhesive for plywood.This research aims to improve bio-based molasses(MO)adhesive for plywood using citric acid(CA)adhesive.In addition,this research aims to analyze the effect of adding citric acid and to investigate the optimum hot-pressing temperature to produce the best quality plywood.In the first stage,the molasses and citric acid were combined in a ratio of 100:0,75:25,50:50,25:75,0:100 w/w%.Then,the second stage focuses on analyzing the influences of pressing temperature based on an optimum first stage.The research demonstrated that the addition of CA altered the gelation time,solid content,viscosity,and pH of the molasses adhesives.In addition,the thermal properties of molasses adhesives were changed after mixing with citric acid.These phenomena indicate changes in characteristics,such as the curing of adhesive.Overall,the characteristics of plywood showed a steady improvement as the CA ratio increased but revealed a significant decline for the 25:75 MO-CA ratio.By raising the pressing temperature from 180℃ to 200℃,the quality of plywood was effectively improved.The plywood that was bonded using adhesives with a 50:50 MO-CA ratio exhibited superior mechanical properties and improved dimensional stability compared to the plywood bonded solely with MO.Furthermore,the optimal mechanical and physical properties resulted in plywood bonded with a 50:50 MO-CA ratio when subjected to a pressing temperature of 200℃.The Thermal and FTIR measurements revealed that CA established ester bonds with both the MO and wood veneers.In conclusion,the mechanical characteristics of plywood were improved,while maintaining its excellent dimensional stability.
基金funding from the NATO Agency Science for Peace and Security (#G5787)Ballistic investigations were co-financed by Military University of Technology in Warsaw under research project UGB 829/2023/WATSeparate works made in G.V.Kurdyumov Institute for Metal Physics of N.A.S.of Ukraine were partially financially supported by N.A.S.of Ukraine within the frames of project#III09-18。
文摘Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(Nos.52274372 and 52201101)the National Key R&D Program of China(No.2021YFB3702404)the Fundamental Research Funds for the Central Universities(No.FRF-TP-22-013A1).
文摘This work investigated the effect of Cr and Si on the mechanical properties and oxidation resistance of press hardened steel.Results indicated that the microstructure of the Cr-Si micro-alloyed press hardened steel consisted of lath martensite,M_(23)C_(6)carbides,and retained austenite.The retained austenite and carbides are responsible for the increase in elongation of the micro-alloyed steel.In addition,after oxidation at 930℃for 5 min,the thickness of the oxide scales on the Cr-Si micro-alloyed press hardened steel is less than 5μm,much thinner than 45.50μm-thick oxide scales on 22MnB5.The oxide scales of the Cr-Si micro-alloyed steel are composed of Fe_(2)O_(3),Fe_(3)O_(4),mixed spinel oxide(FeCr_(2)O_(4)and Fe_(2)SiO_(4)),and amorphous SiO_(2).Adding Cr and Si significantly reduces the thickness of the oxide scales and prevents the generation of the FeO phase.Due to the increase of spinel FeCr_(2)O_(4)and Fe_(2)SiO_(4)phase in the inner oxide scale and the amorphous SiO_(2)close to the substrate,the oxidation resistance of the Cr-Si micro-alloyed press hardened steel is improved.
基金supported by the project number of“China Agricultural Research System funded by the Ministry of Agriculture”CARS-14,the Key Project of Science and Technology of Henan Province (201300110600)the“Double First-Class”Project for Postgraduate Academic Innovation Enhancement Programme of Henan University of Technology (HAUTSYL2023TS16)Education and Teaching Reform Research and Practice Project in School of International Education,Henan University of Technology (GJXY202407).
文摘This study explores the utilization of various chemometric analytical methods for determining the quality of pressed sesame oil with different adulteration levels of refined sesame oil using UV spectral fingerprints.The goal of this study was to provide a reliable tool for assessing the quality of sesame oil.The UV spectra of 51 samples of pressed sesame oil and 420 adulterated samples with refined sesame oil were measured in the range of 200-330 nm.Various classification and prediction methods,including linear discrimination analysis(LDA),support vector machines(SVM),soft independent modeling of class analogy(SIMCA),partial least squares regression(PLSR),support vector machine regression(SVR),and back-propagation neural network(BPNN),were employed to analyze the UV spectral data of pressed sesame oil and adulterated sesame oil.The results indicated that SVM outperformed the other classification methods in qualitatively identifying adulterated sesame oil,achieving an accuracy of 96.15%,a sensitivity of 97.87%,and a specificity of 80%.For quantitative analysis,BPNN yielded the best prediction results,with an R^(2) value of 0.99,RMSEP of 2.34%,and RPD value of 10.60(LOD of 8.60%and LOQ of 28.67%).Overall,the developed models exhibited significant potential for rapidly identifying and predicting the quality of sesame oil.
文摘(Gd,Lu)_(2)O_(3)∶Eu scintillation ceramics have promising applications in the high-energy X-ray imaging.Eu0.1Gd0.6Lu1.3O3 nano-powders with pure phase were prepared from the precursor calcined at 1050℃for 4 h by the co-precipitation method.Using the synthesized nano-powders as initial material,Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics were fabri-cated by vacuum pre-sintering at different temperatures for 2 h and hot isostatic pressing(HIP)at 1750℃for 3 h in ar-gon.The influence of pre-sintering temperature on the microstructure,optical and luminescence properties was investi-gated.The Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics pre-sintered at 1625℃for 2 h combined with HIP post-treatment show the high-est in-line transmittance of 75.2%at 611 nm.The photoluminescence(PL)and X-ray excited luminescence(XEL)spectra of the Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)transparent ceramics demonstrate a strong red emission peak at 611 nm due to the^(5)D_(0)→^(7)F_(2) transition of Eu^(3+).The PL,PLE and XEL intensities of the HIP post-treated Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics show a trend of first ascending and then descending with the increase of pre-sintering temperature.The thermally stimulated lumines-cence(TSL)curve of the HIP post-treated Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics presents one high peak at 178 K and two peaks with lower intensities at 253 K and 320 K.The peak at 320 K may be related to oxygen vacancies,and the lumines-cence peak at 178 K is related to defects caused by the valence state changes of Eu^(3+)ions.
文摘With a view to improving rabbit production performance, a trial on the chemical composition of pineapple press residue (Ananas comosus) and the effect of its incorporation in the ration on rabbit growth performance (Oryctolagus cuniculus) was carried out at the KUATE Cunicole Farm in Bandjoun, in Western Cameroon. To do this, 36 rabbits of the local breed, aged 53 days with an average weight of 1337 ± 119 g were distributed and randomly assigned to 3 experimental rations corresponding respectively to treatments or batches T0, T1 and T2. The animals in treatment T0 received a ration containing no pineapple press residue, while those in treatments T1 and T2 received a ration containing 20% and 40% pineapple press residue, respectively. These residues were dried and ground for chemical composition analysis. The feed served as well as refusals from the previous day were weighed each morning to assess feed intake. The animals were weighed every 7 days to assess weight performance. At the end of the trial which lasted 7 weeks, the animals were fasted for 24 hours, then sacrificed to evaluate carcass characteristics and the relative weights of some digestive organs. The results of this study showed that pineapple press residues had a high crude fiber content (19.2%) and energy (2500 Kcal/kg DM). Their incorporation had no significant effect on feed intake and feed conversion ratio. The average live weight, weight gain and average daily weight gain of the animals receiving the ration with 20% inclusion of pineapple press residue were comparable to those of the control group and significantly higher than those of animals fed with 40% inclusion of pineapple residue. The highest carcass yields were obtained with rabbits fed 20% pineapple press residue in their ration. The cost of feed for the production of a kilogram live weight of rabbit tends to decrease with the ration incorporated with 20% pineapple press residue. Pineapple press residues constitute a by-product that can be recycled and their incorporation at 20% can increase rabbit growth performance and reduce production costs.
文摘How time flies!I’m a little sad when I realize that I will graduate from junior high school in a few months.Luckily,I have some wonderful memories.The person who impressed me most was my friend.My English was bad before and I felt unhappy about it.So I told it to a girl called Mary,who was good at English.She was willing to help me and made friends with me.She taught me some useful ways to learn English.
文摘Time flies like an arrow,and time lost never returns.In the past few years of my junior high school life,what impressed me most was running.At first,I didn’t like sports.I thought I was supposed to spend more time on school work than on exercise.But gradually,I found that running was not only good for my health,but also helped me relieve stress.When I opened my arms and stretched my legs on the playground,I was like a deer running in the field,which made me get a sense of belonging.