A servo press is a new type of mechanical press that is driven by programmable motors and offers superior performance such as low noise, excellent efficiency and high precision for metal forming operations. Similar to...A servo press is a new type of mechanical press that is driven by programmable motors and offers superior performance such as low noise, excellent efficiency and high precision for metal forming operations. Similar to multi-link mechanical presses, a servo mechanical press tends to grow in size as the tonnage increases that calls for larger, heavy duty servo motors, which could be expensive and may not even be available. In this paper, a new concept of servo mechanical press with redundant actuation is proposed firstly using two servo motors driving one input shaft, i.e. one-point-two-motor mode that makes it possible to produce a larger press with available servomotors. Then the punching mechanism design is detailed. The performance indices are set up including mechanical advantage reciprocal and link force ratios. A bounded feasible solution space is constructed for dimensional synthesis based on non-dimensional link lengths and assembly conditions. The performance atlases are depicted over the bounded feasible solution space that lead to a visual solution of the punching mechanism with global optimization. Finally, case studies are given to illustrate the design method with visual global optimization, and a prototype with 200 t punching force is being developed in our laboratory to demonstrate efficacy of the new concept for servo mechanical press. The presented research provides a feasible solution to the development of heavy-duty servo mechanical presses and finds potential applications in the development of other types of heavy equipments with electric drive.展开更多
The structure stiffness of presses has great effects on the forming precision of workpieces, especially in near-net or net shape forming. Conventionally the stiffness specification of presses is empirically determined...The structure stiffness of presses has great effects on the forming precision of workpieces, especially in near-net or net shape forming. Conventionally the stiffness specification of presses is empirically determined, resulting in poor designs with insufficient or over sufficient stiffness of press structures. In this paper, an approach for the structure design of hydraulic presses is proposed, which is forming-precision-driven and can make presses costeffective by lightweight optimization. The approach consists of five steps:(1)the determination of the press stiffness specification in terms of the forming precision requirement of workpieces;(2)the conceptual design of the press structures according to the stiffness and workspace specifications, and the structure configuration of the press;(3)the prototype design of the press structures by equivalently converting the conceptual design to prototypes;(4)the selection of key structure parameters by sensitivity analysis of the prototype design; and(5)the optimization of the prototype design. The approach is demonstrated and validated through a case study of the structure design of a 100 MN hydraulic press.展开更多
In this investigation, the effect of formulation variables on the release properties of timed- release press-coated tablets was studied using the Taguchi method of experimental design. Formulations were prepared based...In this investigation, the effect of formulation variables on the release properties of timed- release press-coated tablets was studied using the Taguchi method of experimental design. Formulations were prepared based on Taguchi orthogonal array design with different types of hydrophilic polymers (X1), varying hydrophilic polymer/ethyl cellulose ratio (X2), and addition of magnesium stearate (X3) as independent variables. The design was quantitatively evalu-ated by best fit mathematical model. The results from the statistical analysis revealed that factor X1, X3 and interaction factors between X1X2 and X1X3 were found to be significant on the re-sponse lag time (Y1), where as only factor X1 was found to be significant on the response percent drug release at 8 hrs (Y2). A numerical optimization technique by desirability function was used to optimize the response variables, each having a different target. Based on the re-sults of optimization study, HPC was identified as the most suitable hydrophilic polymer and incorporation of hydrophobic agent magnesium stearate, could significantly improve the lag time of the timed-release press-coated tablet.展开更多
We previously determined "Tableting properties" by using a multi-functional single-punch tablet press(GTP-1). We plotted "Compactability" on the x-axis against "Manufacturability"on the y...We previously determined "Tableting properties" by using a multi-functional single-punch tablet press(GTP-1). We plotted "Compactability" on the x-axis against "Manufacturability"on the y-axis to allow visual evaluation of "Tableting properties". Here, we examined whether this evaluation method can be used in the formulation design of tablets prepared by wet granulation. We used the GTP-1 to measure "Tableting properties" with different amounts of binder, disintegrant, and lubricant, and compared the results with those of tableting on a commercial rotary tableting machine. Tableting failures(capping and binding in particular) occurred when samples that had been evaluated as having poor "Compactability" or"Manufacturability" on the GTP-1 were compressed on the rotary tableting machine. Thus,our evaluation method predicted tableting failure at the commercial scale. The method will prove useful for scaling up production.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50875161, No. 50405017)National Hi-Tech Research and Development Program of China (863 Program, Grant No. 2006AA04Z118)
文摘A servo press is a new type of mechanical press that is driven by programmable motors and offers superior performance such as low noise, excellent efficiency and high precision for metal forming operations. Similar to multi-link mechanical presses, a servo mechanical press tends to grow in size as the tonnage increases that calls for larger, heavy duty servo motors, which could be expensive and may not even be available. In this paper, a new concept of servo mechanical press with redundant actuation is proposed firstly using two servo motors driving one input shaft, i.e. one-point-two-motor mode that makes it possible to produce a larger press with available servomotors. Then the punching mechanism design is detailed. The performance indices are set up including mechanical advantage reciprocal and link force ratios. A bounded feasible solution space is constructed for dimensional synthesis based on non-dimensional link lengths and assembly conditions. The performance atlases are depicted over the bounded feasible solution space that lead to a visual solution of the punching mechanism with global optimization. Finally, case studies are given to illustrate the design method with visual global optimization, and a prototype with 200 t punching force is being developed in our laboratory to demonstrate efficacy of the new concept for servo mechanical press. The presented research provides a feasible solution to the development of heavy-duty servo mechanical presses and finds potential applications in the development of other types of heavy equipments with electric drive.
基金Supported by the National Natural Science Foundation of China(No.50805101 and No.51275347)the National Key S&T Special Projects of China on CNC Machine Tools and Fundamental Manufacturing Equipment(No.2010ZX04001-191 and No.2011ZX04002-032)the Science and Technology R&D Program of Tianjin(No.13JCZDJC35000 and No.12ZCDZGX45000)
文摘The structure stiffness of presses has great effects on the forming precision of workpieces, especially in near-net or net shape forming. Conventionally the stiffness specification of presses is empirically determined, resulting in poor designs with insufficient or over sufficient stiffness of press structures. In this paper, an approach for the structure design of hydraulic presses is proposed, which is forming-precision-driven and can make presses costeffective by lightweight optimization. The approach consists of five steps:(1)the determination of the press stiffness specification in terms of the forming precision requirement of workpieces;(2)the conceptual design of the press structures according to the stiffness and workspace specifications, and the structure configuration of the press;(3)the prototype design of the press structures by equivalently converting the conceptual design to prototypes;(4)the selection of key structure parameters by sensitivity analysis of the prototype design; and(5)the optimization of the prototype design. The approach is demonstrated and validated through a case study of the structure design of a 100 MN hydraulic press.
文摘In this investigation, the effect of formulation variables on the release properties of timed- release press-coated tablets was studied using the Taguchi method of experimental design. Formulations were prepared based on Taguchi orthogonal array design with different types of hydrophilic polymers (X1), varying hydrophilic polymer/ethyl cellulose ratio (X2), and addition of magnesium stearate (X3) as independent variables. The design was quantitatively evalu-ated by best fit mathematical model. The results from the statistical analysis revealed that factor X1, X3 and interaction factors between X1X2 and X1X3 were found to be significant on the re-sponse lag time (Y1), where as only factor X1 was found to be significant on the response percent drug release at 8 hrs (Y2). A numerical optimization technique by desirability function was used to optimize the response variables, each having a different target. Based on the re-sults of optimization study, HPC was identified as the most suitable hydrophilic polymer and incorporation of hydrophobic agent magnesium stearate, could significantly improve the lag time of the timed-release press-coated tablet.
文摘We previously determined "Tableting properties" by using a multi-functional single-punch tablet press(GTP-1). We plotted "Compactability" on the x-axis against "Manufacturability"on the y-axis to allow visual evaluation of "Tableting properties". Here, we examined whether this evaluation method can be used in the formulation design of tablets prepared by wet granulation. We used the GTP-1 to measure "Tableting properties" with different amounts of binder, disintegrant, and lubricant, and compared the results with those of tableting on a commercial rotary tableting machine. Tableting failures(capping and binding in particular) occurred when samples that had been evaluated as having poor "Compactability" or"Manufacturability" on the GTP-1 were compressed on the rotary tableting machine. Thus,our evaluation method predicted tableting failure at the commercial scale. The method will prove useful for scaling up production.