Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ...Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.展开更多
An open-source computational fluid dynamics(CFD)code named OpenFOAM is used to validate the flow field characteristics(flow patterns and pressure drop)around a single cylinder.Results show that OpenFOAM is suitabl...An open-source computational fluid dynamics(CFD)code named OpenFOAM is used to validate the flow field characteristics(flow patterns and pressure drop)around a single cylinder.Results show that OpenFOAM is suitable for simulating the low Reynolds number flow and Shaw's analytical expression is one of the solutions to Stokes' paradox.Experiments are performed on fibrous media and OpenFOAM simulation is carried out using the Tronville-Rivers two-dimensional random fiber model in terms of the characteristics of pressure drop.It is shown that the Kuwabara model predicts the pressure drop of fibrous filter media more accurately than the Happel model,and the experimental pressure drop is between simulated pressure drops with both non-slip and full-slip boundaries on fiber surfaces.展开更多
The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cr...The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cross-section microchannels was measured by a pressure differential transducer system. Water,ethanol and n-propanol were used as liquid phase to study the effects of capillary number on pressure drop;air was used as the gas phase. Four microchannels with various dimensions of 100 μm× 200 μm,100 μm× 400 μm,100 μm× 800 μm and 100 μm× 2000 μm(depth × width) were used for determining the influence of configuration on the pressure drop. Experimental results showed that in micro-scale,the capillary number also affected the pressure drop remarkably,and in spite of only one-fold difference in aspect ratio,the variation of pressure drop reached up to near three times under the same experimental conditions. Taking the effects of aspect ratio and surface tension into account,a modi-fied correlation for Chisholm parameter C in the Chisholm model was proposed for predicting the frictional multi-plier,and the predicted values by the proposed correlation showed a satisfactory agreement with experimental data.展开更多
This paper describes a robust support vector regression (SVR) methodology, which can offer superior performance for important process engineering problems. The method incorporates hybrid support vector regression an...This paper describes a robust support vector regression (SVR) methodology, which can offer superior performance for important process engineering problems. The method incorporates hybrid support vector regression and genetic algorithm technique (SVR-GA) for efficient tuning of SVR meta-parameters. The algorithm has been applied for prediction of pressure drop of solid liquid slurry flow. A comparison with selected correlations in the lit- erature showed that the developed SVR correlation noticeably improved the prediction of pressure drop over a wide range of operating conditions, physical properties, and pipe diameters.展开更多
The gas-liquid two-phase swirl flow can increase the gas-liquid two-phase contact area and enhance the heat and mass transfer efficiency between gas and liquid.The swirl flow has important practical application value ...The gas-liquid two-phase swirl flow can increase the gas-liquid two-phase contact area and enhance the heat and mass transfer efficiency between gas and liquid.The swirl flow has important practical application value for promoting gas hydrate formation and ensuring the flow safe of natural gas hydrate slurry.The experimental section was made of plexiglass pipe and the experimental medium was air and water.The flow pattern of the gas-liquid two-phase swirl flow in the horizontal pipe was divided,according to a high-definition camera and the overall characteristics of the gas-liquid interface.The flow pattern map of the gas-liquid two-phase swirl flow in a horizontal pipe was studied.The influence of the flow velocity and vane parameters on pressure drop was investigated.Two types of gas-liquid two-phase swirl flow pressure drop models was established.The homogeneous-phase and split-phase pressure drop models have good prediction on swirl bubble flow,swirl dispersed flow,swirl annular flow and swirl stratified flow,and the predictive error band is not more than 20%.展开更多
Under the condition of steady state, the pressure drop of coolant is mainly caused by friction along the cable. In the CICC (cable-in-conduit-conductor), helium flow within the conductor consists of two parallel inter...Under the condition of steady state, the pressure drop of coolant is mainly caused by friction along the cable. In the CICC (cable-in-conduit-conductor), helium flow within the conductor consists of two parallel interconnected tubes. The velocity distribution has some differece between the central channel and conductor space. The region of Reynolds number is from 103 to 106. This paper describes the calculation of pressure drop of HT-7U CICC at various mass flows. It is assumed that the coolant flows in two parallel, rough tubes during the calculation.展开更多
A packing-flotation column was proposed to optimize the flotation environment A research system was es- tablished using a 100 mm diameter cyclonic micro-bubble flotation column to study fluid properties. Dry-plate and...A packing-flotation column was proposed to optimize the flotation environment A research system was es- tablished using a 100 mm diameter cyclonic micro-bubble flotation column to study fluid properties. Dry-plate and wet- plate pressure drops were studied and the corresponding pressure drop equations developed. The results show that the dry-plate pressure drop of the packing cyclonic micro-bubble flotation column is 10–15 times less than that of the chemical tower, which is principally shown in its relatively small resistance coefficient, ξ ≈0.0207. The wet-plate pressure drop is 2–3 times higher than that of the chemical tower, which is largely caused by the separation materials and characteristics of the equipment. With flotation, the greater the pressure drop, the better the flotation environment.展开更多
A compact annular-radial-orifice flow magnetorheological(MR)valve was developed to investigate the effects of radial resistance gap on pressure drop.The fluid flow paths of this proposed MR valve consist of a single a...A compact annular-radial-orifice flow magnetorheological(MR)valve was developed to investigate the effects of radial resistance gap on pressure drop.The fluid flow paths of this proposed MR valve consist of a single annular flow channel,a single radial flow channel and an orifice flow channel through structure design.The finite element modelling and simulation analysis of the MR valve was carried out using ANSYS/Emag software to investigate the changes of the magnetic flux density and yield stress along the fluid flow paths under the four different radial resistance gaps.Moreover,the experimental tests were also conducted to evaluate the pressure drop,showing that the proposed MR valve has significantly improved its pressure drop at 0.5 mm width of the radial resistance gap when the annular resistance gap is fixed at 1 mm.展开更多
An experimental investigation on the boiling heat transfer and frictional pressure drop of R245fa in a 7 mm horizontal micro-fin tube was performed.The results show that in terms of flow boiling heat transfer characte...An experimental investigation on the boiling heat transfer and frictional pressure drop of R245fa in a 7 mm horizontal micro-fin tube was performed.The results show that in terms of flow boiling heat transfer characteristics,boiling heat transfer coefficient(HTC)increases with mass velocity of R245fa,while it decreases with the increment of saturation temperature and heat flux.With the increase of vapor quality,HTC has a maximum and the corresponding vapor quality is about 0.4,which varies with the operating conditions.When vapor quality is larger than the transition point,HTC can be promoted more remarkably at higher mass velocity or lower saturation temperature.Among the four selected correlations,KANDLIKAR correlation matches with 91.6%of experimental data within the deviation range of±25%,and the absolute mean deviation is 11.2%.Also,in terms of frictional pressure drop characteristics of flow boiling,the results of this study show that frictional pressure drop increases with mass velocity and heat flux of R245fa,while it decreases with the increment of saturation temperature.MULLER-STEINHAGEN-HECK correlation shows the best prediction accuracy for frictional pressure drop among the four widely used correlations.It covers 84.1%of experimental data within the deviation range of±20%,and the absolute mean deviation is 10.1%.展开更多
Since the production regime of shut-in after fracturing is generally adopted for wells in shale oil reservoir,a shut-in pressure drop model coupling wellbore-fracture network-reservoir oil-water two-phase flow has bee...Since the production regime of shut-in after fracturing is generally adopted for wells in shale oil reservoir,a shut-in pressure drop model coupling wellbore-fracture network-reservoir oil-water two-phase flow has been proposed.The model takes into account the effects of wellbore afterflow,fracture network channeling,and matrix imbibition and oil exchange after stop of pumping.The simulated log-log curve of pressure-drop derivative by the model presents W-shape,reflecting the oil-water displacement law between wellbore,fracture network and matrix,and is divided into eight main control flow stages according to the soaking time.In the initial stage of pressure drop,the afterflow dominates;in the early stage,the pressure drop is controlled by the cross-flow and leakoff of the fracture system,and the fractures close gradually;in the middle stage of pressure drop,matrix imbibition and oil exchange take dominance,and the fracturing fluid loss basically balances with oil replaced from matrix;the late stage of pressure drop is the reservoir boundary control stage,and the leakoff rate of fracturing-fluid and oil exchange rate decrease synchronously till zero.Finally,the fracture network parameters such as half-length of main fracture,main fracture conductivity and secondary fracture density were inversed by fitting the pressure drop data of five wells in Jimsar shale oil reservoir,and the water imbibition volume of matrix and the oil replacement volume in fracture were calculated by this model.The study results provide a theoretical basis for comprehensively evaluating the fracturing effect of shale oil hori-zontal wells and understanding the oil-water exchange law of shale reservoir after fracturing.展开更多
Magnetohydrodynamic (MHD) pressure drop in the Chinese Dual Functional Liquid Lithium-lead Test Blanket Module (DFLL-TBM) proposed for ITER is discussed in this paper. Electrical insulation between the coolant cha...Magnetohydrodynamic (MHD) pressure drop in the Chinese Dual Functional Liquid Lithium-lead Test Blanket Module (DFLL-TBM) proposed for ITER is discussed in this paper. Electrical insulation between the coolant channel surfaces and the liquid metal is required to reduce the MHD pressure drop to a manageable level. Insulation can be provided by a thin insulating coating, such as Al2O3, which can also serve as a tritium barrier layer, at the channel surfaces in contact with LiPb. The coating's effectiveness for reducing the MHD pressure drop is analysed through three-dimensional numerical simulation. A MHD-based commercial computational fluid dynamic (CFD) software FLUENT is used to simulate the LiPb flow. The effect on the MHD pressure drop due to cracks or faults in the coating layer is also considered. The insulating performance requirement for the coating material in DFLL-TBM design is proposed according to the analysis.展开更多
A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of t...A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of the MTHE tubes was proposed and compared with previous experimental data in the Reynolds number range of 500—1 800. The average deviation of the correlation in calculating the Nusselt number was about 6.59%. The entrance effect in the thermal entrance region was discussed. In the same range of Reynolds number, the pressure drop and friction coefficient were found to be considerably higher than those predicted by the conventional correlations. The product of friction factor and Reynolds number was also a constant, but much higher than the conventional.展开更多
Pressure drops are of major importance for distillation/absorption columns. This paper mainly discusses how to correctly measure, interpret and use pressure drop data. The possible causes of incorrect pressure drop me...Pressure drops are of major importance for distillation/absorption columns. This paper mainly discusses how to correctly measure, interpret and use pressure drop data. The possible causes of incorrect pressure drop measurements are studied including the effects of pressure tap dimensions, locations, and vapor condensation etc. The effect of the static head of vapor on the pressure drop data and column pressures is evaluated. Variations of sectional pressure drops along the column are investigated based on the experimental data obtained from commercial size distillation columns at Fractionation Research, Inc. (FRI). For a packed column, it is found that the spacing between the liquid distributor and the top of the bed affects the overall pressure drop measurements, which is confirmed by a fundamental fluid dynamics analysis.展开更多
Preliminary analysis and calculation of liquid metal Li17Pb83 magnetohydrodynamic (MHD) pressure drop in the blanket for the FDS have been presented to evaluate the significance of MHD effects on the thermal-hydraulic...Preliminary analysis and calculation of liquid metal Li17Pb83 magnetohydrodynamic (MHD) pressure drop in the blanket for the FDS have been presented to evaluate the significance of MHD effects on the thermal-hydraulic design of the blanket. To decrease the liquid metal MHD pressure drop, Al2O3 is applied as an electronically insulated coating onto the inner surface of the ducts. The requirement for the insulated coating to reduce the additional leakage pressure drop caused by coating imperfections has been analyzed. Finally, the total liquid metal MHD pressure drop and magnetic pump power in the FDS blanket have been given.展开更多
Submerged gas injection into liquid leads to complex multiphase flow, in which nozzle geometries are crucial important for the operational expenditure in terms of pressure drop. The influence of the nozzle geometry on...Submerged gas injection into liquid leads to complex multiphase flow, in which nozzle geometries are crucial important for the operational expenditure in terms of pressure drop. The influence of the nozzle geometry on pressure drop between nozzle inlet and outlet has been experimentally studied for different gas flow rates and bath depths. Nozzles with circular, gear-like and four-leaf cross-sectional shape have been studied. The results indicate that, besides the hydraulic diameter of the outlet, the orifice area and the perimeter of the nozzle tip also play significant roles. For the same superficial gas velocity, the average pressure drop from the four-leaf-shaped geometry is the least. The influence of bath depth was found negligible. A correlation for the modified Euler number considering the pressure drop is proposed depending on nozzle geometric parameter and on the modified Froude number with the hydraulic diameter of the nozzle do as characteristic length.展开更多
By introducing the coupling flow expressions of main fracture-matrix, secondary fracture-matrix and main fracture-secondary fracture into the traditional main fracture material balance equation, the “main fracture-se...By introducing the coupling flow expressions of main fracture-matrix, secondary fracture-matrix and main fracture-secondary fracture into the traditional main fracture material balance equation, the “main fracture-secondary fracture-matrix” leak-off coupling flow model is established. The pressure-dependent fracture width equation and the wellbore injection volume equation are coupled to solve the pressure-rate continuity problem. The simulation and calculation of the bottomhole pressure drop and fracture network closure after the pump stopping in slickwater volumetric fracturing treatment are realized. The research results show that the log-log curve of pump-stopping bottomhole pressure drop derivative presents five characteristic slope segments, reflecting four dominant stages, i.e. inter-fracture crossflow, fracture network leak-off, fracture network closure and residual leak-off, after pump shutdown. At the initial time of pump shutdown for volumetric fracturing treatment of horizontal well, the crossflow between main and secondary fractures is obvious, and then the leak-off becomes dominant. The leak-off of main and secondary fractures shows a non-uniform decreasing trend. Specifically, the leak-off of main fractures is slow, while that of secondary fractures is fast;the fracture network as a whole presents the leak-off law of fast first, then slow, until close to zero. The influence of fracture network conductivity on the shape of pressure decline curve is relatively weaker than that of fracture network size. The fracture network conductivity is positively correlated with leak-off volume and fracture closure. The secondary fracture size is positively correlated with leakoff volume and closure of the secondary fracture, but negatively correlated with closure of the main fracture. Field data validation proves that the proposed model and simulation results can effectively reflect the closure characteristics of the fracture network, and the interpretation results are reliable and can reflect the non-uniform stimulation performance of each fracturing stage of an actual horizontal well.展开更多
Experiments were conducted to study characteristics of flow when flow is fluctuating.The experimental results showed a phase difference between the flow rate and the pressure drop fluctuations.This phase difference be...Experiments were conducted to study characteristics of flow when flow is fluctuating.The experimental results showed a phase difference between the flow rate and the pressure drop fluctuations.This phase difference between the fluctuating flow rate and pressure drop was analyzed for laminar flow.Analysis showed that the phase difference changes with the period of the flow fluctuation, the pipe radius, the density and the dynamic viscosity of the liquid.Fluctuating pipe flow was then numerically simulated.Results of the numerical simulation were compared with theoretical values and experimental results.It was shown that, when the flow rate fluctuates with time as a sine wave, the pressure drop fluctuates with the same periodicity, and there is a phase difference between them.展开更多
In this work an experimental study combined with an analytical investigation for cooling superheated Carbon Dioxide (CO2) gas were carried out. This work is intended to be part of the super critical Gustav Lorentzen...In this work an experimental study combined with an analytical investigation for cooling superheated Carbon Dioxide (CO2) gas were carried out. This work is intended to be part of the super critical Gustav Lorentzen refrigeration cycle of CO2. Experimental and analytical works concentrated on heat transfer and pressure drop for single phase flow during gas cooling inside tubes filled with porous media. Analytical empirical correlations were formulated for the coefficient of convectional heat transfer and for the pressure drop. A comparison between experimental results and that obtained by developed correlations were carried out, and a comparison between these results and literature published ones were carried out too. The results of this research showed that for cooling process the proposed correlations were proved to be acceptably accurate for pressure drop with difference from experimental results of 2%, while for convective heat transfer the difference from experimental results reached about 3%. More than 90% agreement with literature results was obtained. This work can enhance the calculations of heat flux and pressure drop of gases flow inside porous media filled tubes, and can help in the design procedure of heat exchangers and cooling processes.展开更多
The pressure drop prediction of wet gas across single-orifice plate in horizontal pipes had been solved satisfactorily under an annular-mist flow in the upstream of orifice plates.However,this pressure drop prediction...The pressure drop prediction of wet gas across single-orifice plate in horizontal pipes had been solved satisfactorily under an annular-mist flow in the upstream of orifice plates.However,this pressure drop prediction is still not clearly determined when the upstream is in an intermittent flow or stratified flow,which is corresponding to a region of low FrG(gas phase Froude number)in the flow pattern map of wet gases.In this study,the wet gas pressure drop across a single-orifice plate was experimentally investigated in the low FrG region.By the experiment,the flow pattern transition in the downstream of single-orifice plates,as well as the effects of FrG and FrL(liquid phase Froude number)on UG(gas phase multiplier),were determined and compared when the upstream is in the flow pattern transition and the stratified flow region,respectively.Prediction performances were examined on the available pressure drop models.It was found that no model could be capable of jointly predicting the wet gas pressure drop in the low FrG region with an acceptable accuracy.With a new method of correlating FrG and FrL simultaneously,new correlations were proposed for the low FrG region.Among which the modified Chisholm model shows the best prediction accuracies,with the prediction deviations of UG being within 7%and 3%when the upstream is in flow pattern transition and stratified flow region,respectively.展开更多
The time-dependent liquid film thickness and pressure drop were measured by using parallel-wire conductance probes and capacitance differential-pressure transducers. Applying the eddy viscosity theory and an appropria...The time-dependent liquid film thickness and pressure drop were measured by using parallel-wire conductance probes and capacitance differential-pressure transducers. Applying the eddy viscosity theory and an appropriate correlation of interfacial sear stress,a new two-dimensional separated model of holdup and pressure drop of turbulent/turbulent gas-liquid stratified flow was presented. Prediction results agreed well with experimental data.展开更多
基金the support of the Opening Fund of State Key Laboratory of Multiphase Flow in Power Engineering(SKLMF-KF-2102)。
文摘Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.
基金China Scholarship Council Postgraduate Scholarship Program(No.2007U20027)the National Natural Science Foundation of China(No.50876020)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2008BAJ12B02)
文摘An open-source computational fluid dynamics(CFD)code named OpenFOAM is used to validate the flow field characteristics(flow patterns and pressure drop)around a single cylinder.Results show that OpenFOAM is suitable for simulating the low Reynolds number flow and Shaw's analytical expression is one of the solutions to Stokes' paradox.Experiments are performed on fibrous media and OpenFOAM simulation is carried out using the Tronville-Rivers two-dimensional random fiber model in terms of the characteristics of pressure drop.It is shown that the Kuwabara model predicts the pressure drop of fibrous filter media more accurately than the Happel model,and the experimental pressure drop is between simulated pressure drops with both non-slip and full-slip boundaries on fiber surfaces.
基金Supported by the National Natural Science Foundation of China (20876107) the Opening Project of State Key Laboratory of Chemical Engineering (SKL-ChE-08B06)
文摘The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cross-section microchannels was measured by a pressure differential transducer system. Water,ethanol and n-propanol were used as liquid phase to study the effects of capillary number on pressure drop;air was used as the gas phase. Four microchannels with various dimensions of 100 μm× 200 μm,100 μm× 400 μm,100 μm× 800 μm and 100 μm× 2000 μm(depth × width) were used for determining the influence of configuration on the pressure drop. Experimental results showed that in micro-scale,the capillary number also affected the pressure drop remarkably,and in spite of only one-fold difference in aspect ratio,the variation of pressure drop reached up to near three times under the same experimental conditions. Taking the effects of aspect ratio and surface tension into account,a modi-fied correlation for Chisholm parameter C in the Chisholm model was proposed for predicting the frictional multi-plier,and the predicted values by the proposed correlation showed a satisfactory agreement with experimental data.
文摘This paper describes a robust support vector regression (SVR) methodology, which can offer superior performance for important process engineering problems. The method incorporates hybrid support vector regression and genetic algorithm technique (SVR-GA) for efficient tuning of SVR meta-parameters. The algorithm has been applied for prediction of pressure drop of solid liquid slurry flow. A comparison with selected correlations in the lit- erature showed that the developed SVR correlation noticeably improved the prediction of pressure drop over a wide range of operating conditions, physical properties, and pipe diameters.
基金Project(51574045)supported by the National Nature Science Foundation of China
文摘The gas-liquid two-phase swirl flow can increase the gas-liquid two-phase contact area and enhance the heat and mass transfer efficiency between gas and liquid.The swirl flow has important practical application value for promoting gas hydrate formation and ensuring the flow safe of natural gas hydrate slurry.The experimental section was made of plexiglass pipe and the experimental medium was air and water.The flow pattern of the gas-liquid two-phase swirl flow in the horizontal pipe was divided,according to a high-definition camera and the overall characteristics of the gas-liquid interface.The flow pattern map of the gas-liquid two-phase swirl flow in a horizontal pipe was studied.The influence of the flow velocity and vane parameters on pressure drop was investigated.Two types of gas-liquid two-phase swirl flow pressure drop models was established.The homogeneous-phase and split-phase pressure drop models have good prediction on swirl bubble flow,swirl dispersed flow,swirl annular flow and swirl stratified flow,and the predictive error band is not more than 20%.
基金This work was supported by the National Meg-science Engineering Project of the Chinese Government.
文摘Under the condition of steady state, the pressure drop of coolant is mainly caused by friction along the cable. In the CICC (cable-in-conduit-conductor), helium flow within the conductor consists of two parallel interconnected tubes. The velocity distribution has some differece between the central channel and conductor space. The region of Reynolds number is from 103 to 106. This paper describes the calculation of pressure drop of HT-7U CICC at various mass flows. It is assumed that the coolant flows in two parallel, rough tubes during the calculation.
基金Project 50425414 supported by the National Outstanding Youth Science Foundation of China
文摘A packing-flotation column was proposed to optimize the flotation environment A research system was es- tablished using a 100 mm diameter cyclonic micro-bubble flotation column to study fluid properties. Dry-plate and wet- plate pressure drops were studied and the corresponding pressure drop equations developed. The results show that the dry-plate pressure drop of the packing cyclonic micro-bubble flotation column is 10–15 times less than that of the chemical tower, which is principally shown in its relatively small resistance coefficient, ξ ≈0.0207. The wet-plate pressure drop is 2–3 times higher than that of the chemical tower, which is largely caused by the separation materials and characteristics of the equipment. With flotation, the greater the pressure drop, the better the flotation environment.
基金Supported by the National Natural Science Foundation of China(51765016,51475165,11462004)the Jiangxi Provincial Foundation for Leaders of Academic and Disciplines in Science(20162BCB22019)5511 Science and Technology Innovation Talent Project of Jiangxi Province(20165BCB18011)
文摘A compact annular-radial-orifice flow magnetorheological(MR)valve was developed to investigate the effects of radial resistance gap on pressure drop.The fluid flow paths of this proposed MR valve consist of a single annular flow channel,a single radial flow channel and an orifice flow channel through structure design.The finite element modelling and simulation analysis of the MR valve was carried out using ANSYS/Emag software to investigate the changes of the magnetic flux density and yield stress along the fluid flow paths under the four different radial resistance gaps.Moreover,the experimental tests were also conducted to evaluate the pressure drop,showing that the proposed MR valve has significantly improved its pressure drop at 0.5 mm width of the radial resistance gap when the annular resistance gap is fixed at 1 mm.
基金Project(51606162)supported by the National Natural Science Foundation of ChinaProject(2018JJ2399)supported by the Natural Science Foundation of Hunan Province,China
文摘An experimental investigation on the boiling heat transfer and frictional pressure drop of R245fa in a 7 mm horizontal micro-fin tube was performed.The results show that in terms of flow boiling heat transfer characteristics,boiling heat transfer coefficient(HTC)increases with mass velocity of R245fa,while it decreases with the increment of saturation temperature and heat flux.With the increase of vapor quality,HTC has a maximum and the corresponding vapor quality is about 0.4,which varies with the operating conditions.When vapor quality is larger than the transition point,HTC can be promoted more remarkably at higher mass velocity or lower saturation temperature.Among the four selected correlations,KANDLIKAR correlation matches with 91.6%of experimental data within the deviation range of±25%,and the absolute mean deviation is 11.2%.Also,in terms of frictional pressure drop characteristics of flow boiling,the results of this study show that frictional pressure drop increases with mass velocity and heat flux of R245fa,while it decreases with the increment of saturation temperature.MULLER-STEINHAGEN-HECK correlation shows the best prediction accuracy for frictional pressure drop among the four widely used correlations.It covers 84.1%of experimental data within the deviation range of±20%,and the absolute mean deviation is 10.1%.
基金Supported by the National Natural Science Foundation of China(No.51974332)。
文摘Since the production regime of shut-in after fracturing is generally adopted for wells in shale oil reservoir,a shut-in pressure drop model coupling wellbore-fracture network-reservoir oil-water two-phase flow has been proposed.The model takes into account the effects of wellbore afterflow,fracture network channeling,and matrix imbibition and oil exchange after stop of pumping.The simulated log-log curve of pressure-drop derivative by the model presents W-shape,reflecting the oil-water displacement law between wellbore,fracture network and matrix,and is divided into eight main control flow stages according to the soaking time.In the initial stage of pressure drop,the afterflow dominates;in the early stage,the pressure drop is controlled by the cross-flow and leakoff of the fracture system,and the fractures close gradually;in the middle stage of pressure drop,matrix imbibition and oil exchange take dominance,and the fracturing fluid loss basically balances with oil replaced from matrix;the late stage of pressure drop is the reservoir boundary control stage,and the leakoff rate of fracturing-fluid and oil exchange rate decrease synchronously till zero.Finally,the fracture network parameters such as half-length of main fracture,main fracture conductivity and secondary fracture density were inversed by fitting the pressure drop data of five wells in Jimsar shale oil reservoir,and the water imbibition volume of matrix and the oil replacement volume in fracture were calculated by this model.The study results provide a theoretical basis for comprehensively evaluating the fracturing effect of shale oil hori-zontal wells and understanding the oil-water exchange law of shale reservoir after fracturing.
基金Anhui Provincial Natural Science Foundation of China(No.070413085)Anhui Education Department Natural Science Foundation of China(No.2006KJ264)
文摘Magnetohydrodynamic (MHD) pressure drop in the Chinese Dual Functional Liquid Lithium-lead Test Blanket Module (DFLL-TBM) proposed for ITER is discussed in this paper. Electrical insulation between the coolant channel surfaces and the liquid metal is required to reduce the MHD pressure drop to a manageable level. Insulation can be provided by a thin insulating coating, such as Al2O3, which can also serve as a tritium barrier layer, at the channel surfaces in contact with LiPb. The coating's effectiveness for reducing the MHD pressure drop is analysed through three-dimensional numerical simulation. A MHD-based commercial computational fluid dynamic (CFD) software FLUENT is used to simulate the LiPb flow. The effect on the MHD pressure drop due to cracks or faults in the coating layer is also considered. The insulating performance requirement for the coating material in DFLL-TBM design is proposed according to the analysis.
基金Supported by National Basic Research Program of China("973"Program,No.2011CB707203)
文摘A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of the MTHE tubes was proposed and compared with previous experimental data in the Reynolds number range of 500—1 800. The average deviation of the correlation in calculating the Nusselt number was about 6.59%. The entrance effect in the thermal entrance region was discussed. In the same range of Reynolds number, the pressure drop and friction coefficient were found to be considerably higher than those predicted by the conventional correlations. The product of friction factor and Reynolds number was also a constant, but much higher than the conventional.
文摘Pressure drops are of major importance for distillation/absorption columns. This paper mainly discusses how to correctly measure, interpret and use pressure drop data. The possible causes of incorrect pressure drop measurements are studied including the effects of pressure tap dimensions, locations, and vapor condensation etc. The effect of the static head of vapor on the pressure drop data and column pressures is evaluated. Variations of sectional pressure drops along the column are investigated based on the experimental data obtained from commercial size distillation columns at Fractionation Research, Inc. (FRI). For a packed column, it is found that the spacing between the liquid distributor and the top of the bed affects the overall pressure drop measurements, which is confirmed by a fundamental fluid dynamics analysis.
基金This work was supported by the National Natural Science Foundation of China No.10175067 and No.10175068
文摘Preliminary analysis and calculation of liquid metal Li17Pb83 magnetohydrodynamic (MHD) pressure drop in the blanket for the FDS have been presented to evaluate the significance of MHD effects on the thermal-hydraulic design of the blanket. To decrease the liquid metal MHD pressure drop, Al2O3 is applied as an electronically insulated coating onto the inner surface of the ducts. The requirement for the insulated coating to reduce the additional leakage pressure drop caused by coating imperfections has been analyzed. Finally, the total liquid metal MHD pressure drop and magnetic pump power in the FDS blanket have been given.
基金Project(51676211) supported by the National Natural Science Foundation of ChinaProject(2017SK2253) supported by the Key R&D Plan of Hunan Province of China+1 种基金Project(2015zzts044) supported by Fundamental Research Funds for the Central Universities,ChinaProject(201606370092) supported by the China Scholarship Council
文摘Submerged gas injection into liquid leads to complex multiphase flow, in which nozzle geometries are crucial important for the operational expenditure in terms of pressure drop. The influence of the nozzle geometry on pressure drop between nozzle inlet and outlet has been experimentally studied for different gas flow rates and bath depths. Nozzles with circular, gear-like and four-leaf cross-sectional shape have been studied. The results indicate that, besides the hydraulic diameter of the outlet, the orifice area and the perimeter of the nozzle tip also play significant roles. For the same superficial gas velocity, the average pressure drop from the four-leaf-shaped geometry is the least. The influence of bath depth was found negligible. A correlation for the modified Euler number considering the pressure drop is proposed depending on nozzle geometric parameter and on the modified Froude number with the hydraulic diameter of the nozzle do as characteristic length.
基金Supported by the National Natural Science Foundation of China (51974332)。
文摘By introducing the coupling flow expressions of main fracture-matrix, secondary fracture-matrix and main fracture-secondary fracture into the traditional main fracture material balance equation, the “main fracture-secondary fracture-matrix” leak-off coupling flow model is established. The pressure-dependent fracture width equation and the wellbore injection volume equation are coupled to solve the pressure-rate continuity problem. The simulation and calculation of the bottomhole pressure drop and fracture network closure after the pump stopping in slickwater volumetric fracturing treatment are realized. The research results show that the log-log curve of pump-stopping bottomhole pressure drop derivative presents five characteristic slope segments, reflecting four dominant stages, i.e. inter-fracture crossflow, fracture network leak-off, fracture network closure and residual leak-off, after pump shutdown. At the initial time of pump shutdown for volumetric fracturing treatment of horizontal well, the crossflow between main and secondary fractures is obvious, and then the leak-off becomes dominant. The leak-off of main and secondary fractures shows a non-uniform decreasing trend. Specifically, the leak-off of main fractures is slow, while that of secondary fractures is fast;the fracture network as a whole presents the leak-off law of fast first, then slow, until close to zero. The influence of fracture network conductivity on the shape of pressure decline curve is relatively weaker than that of fracture network size. The fracture network conductivity is positively correlated with leak-off volume and fracture closure. The secondary fracture size is positively correlated with leakoff volume and closure of the secondary fracture, but negatively correlated with closure of the main fracture. Field data validation proves that the proposed model and simulation results can effectively reflect the closure characteristics of the fracture network, and the interpretation results are reliable and can reflect the non-uniform stimulation performance of each fracturing stage of an actual horizontal well.
基金Supported by the National Natural Science Foundation of China under Grant No.50806014the Foundation of Bubble Physics and Natural Circulation Laboratory of China under Grant No.51482010105CB0101 and No.9140C7105020805
文摘Experiments were conducted to study characteristics of flow when flow is fluctuating.The experimental results showed a phase difference between the flow rate and the pressure drop fluctuations.This phase difference between the fluctuating flow rate and pressure drop was analyzed for laminar flow.Analysis showed that the phase difference changes with the period of the flow fluctuation, the pipe radius, the density and the dynamic viscosity of the liquid.Fluctuating pipe flow was then numerically simulated.Results of the numerical simulation were compared with theoretical values and experimental results.It was shown that, when the flow rate fluctuates with time as a sine wave, the pressure drop fluctuates with the same periodicity, and there is a phase difference between them.
文摘In this work an experimental study combined with an analytical investigation for cooling superheated Carbon Dioxide (CO2) gas were carried out. This work is intended to be part of the super critical Gustav Lorentzen refrigeration cycle of CO2. Experimental and analytical works concentrated on heat transfer and pressure drop for single phase flow during gas cooling inside tubes filled with porous media. Analytical empirical correlations were formulated for the coefficient of convectional heat transfer and for the pressure drop. A comparison between experimental results and that obtained by developed correlations were carried out, and a comparison between these results and literature published ones were carried out too. The results of this research showed that for cooling process the proposed correlations were proved to be acceptably accurate for pressure drop with difference from experimental results of 2%, while for convective heat transfer the difference from experimental results reached about 3%. More than 90% agreement with literature results was obtained. This work can enhance the calculations of heat flux and pressure drop of gases flow inside porous media filled tubes, and can help in the design procedure of heat exchangers and cooling processes.
基金This study was supported by the Major Science and Technology Special Projects in Shanxi Province,China(20181102001).
文摘The pressure drop prediction of wet gas across single-orifice plate in horizontal pipes had been solved satisfactorily under an annular-mist flow in the upstream of orifice plates.However,this pressure drop prediction is still not clearly determined when the upstream is in an intermittent flow or stratified flow,which is corresponding to a region of low FrG(gas phase Froude number)in the flow pattern map of wet gases.In this study,the wet gas pressure drop across a single-orifice plate was experimentally investigated in the low FrG region.By the experiment,the flow pattern transition in the downstream of single-orifice plates,as well as the effects of FrG and FrL(liquid phase Froude number)on UG(gas phase multiplier),were determined and compared when the upstream is in the flow pattern transition and the stratified flow region,respectively.Prediction performances were examined on the available pressure drop models.It was found that no model could be capable of jointly predicting the wet gas pressure drop in the low FrG region with an acceptable accuracy.With a new method of correlating FrG and FrL simultaneously,new correlations were proposed for the low FrG region.Among which the modified Chisholm model shows the best prediction accuracies,with the prediction deviations of UG being within 7%and 3%when the upstream is in flow pattern transition and stratified flow region,respectively.
文摘The time-dependent liquid film thickness and pressure drop were measured by using parallel-wire conductance probes and capacitance differential-pressure transducers. Applying the eddy viscosity theory and an appropriate correlation of interfacial sear stress,a new two-dimensional separated model of holdup and pressure drop of turbulent/turbulent gas-liquid stratified flow was presented. Prediction results agreed well with experimental data.