Biodiesel fuel is a potential alternative energy source for diesel engines due to its physiochemical characteristics relatively similar to those of traditional diesel fuel.In this study,the performance,emission,and co...Biodiesel fuel is a potential alternative energy source for diesel engines due to its physiochemical characteristics relatively similar to those of traditional diesel fuel.In this study,the performance,emission,and combustion features of a mono cylinder DI diesel engine are assessed using 20%Pumpkin seed methyl ester(PSOME20)and considering varying injection pressures(200,220,240,and 260 bar).The considered Pumpkin seed oil is converted into pumpkin biodiesel by transesterification and then used as fuel.The findings demonstrate that the Brake Thermal Efficiency(BTE)of PSOME20 can be raised by 1.68%,and the carbon monoxide(CO),hydrocarbon(HC),and smoke emanations can be lowered,while oxides of nitrogen(NOx)emissions are increased at an injection pressure(IP)of 240 bar compared to the standard IP of 200 bar.The cylinder pressure and the Heat Release Rate(HRR)become higher at 240 bar,whereas the ignition delay is shortened with respect to PSOME20 at a normal IP of 200 bar.展开更多
In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized...In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized,including a quaternary ammonium surfactant and a betaine amphoteric surfactant.The composite surfactant system BYJ-1 was formed by mixing two kinds of surfactants.The minimum interfacial tension between BYJ-1 solution and the crude oil could reach 1.4×10^(-3) mN/m.The temperature resistance was up to 140℃,and the salt resistance could reach up to 120 g/L.For the low permeability core fully saturated with water phase,BYJ-1 could obviously reduce the starting pressure gradient of low permeability core.While for the core with residual oil,BYJ-1 could obviously reduce the injection pressure and improve the oil recovery.Moreover,the field test showed that BYJ-1 could effectively reduce the injection pressure of the water injection well,increase the injection volume,and increase the liquid production and oil production of the corresponding production well.展开更多
A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditiona...A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected.展开更多
For the question of applying high-pressure water injection to increase gas extraction efficiency by increasing the permeability of water to drive gas action, an independently designed gas desorption experimental measu...For the question of applying high-pressure water injection to increase gas extraction efficiency by increasing the permeability of water to drive gas action, an independently designed gas desorption experimental measuring device was used under the condition of external solution invasion. The law of water effect on gas desorption was obtained after water invasion through experiment for the first time. The results show that water's later invasion not only can make the quantity of gas dcsorp- tion greatly reduced, but also can make gas desorption end early. Therefore, when evaluating the applications of high-pressure water injection to increase gas extraction efficiency, we should take water damaging effects on gas desorption into account.展开更多
A set of compressed natural gas (CNG) multi-point direct injection system of spark-ignited engines and the corresponding measurement and data acquisition systems were developed in this paper. Based on different inject...A set of compressed natural gas (CNG) multi-point direct injection system of spark-ignited engines and the corresponding measurement and data acquisition systems were developed in this paper. Based on different injection modes, the mixture formation and combustion of CNG low-pressure direct injection (LPDI) engines were studied under varying factors such as air/ fuel ratio, injection timing. Meanwhile, three-dimensional simulations were adopted to explain the mixture formation mechanisms of CNG low-pressure compound direct injection (LPCDI) mode. On the basis of test results and simulation of the mixture homogeneous degree, the conception of injection window was proposed, and the LPCDI mode was proved to be more beneficial to the mixture concentration stratification formation in cylinder under lean-burning conditions, which resulted in effective combustion and stability.展开更多
Dear Sir,Ifound the article by Sobac1etal[1]very interesting.The authors concluded that repeated intravitreal injection(IVI)of ranibizumab or bevacizumab didn’t seem have adverse effects on retinal nerve fiber layer(...Dear Sir,Ifound the article by Sobac1etal[1]very interesting.The authors concluded that repeated intravitreal injection(IVI)of ranibizumab or bevacizumab didn’t seem have adverse effects on retinal nerve fiber layer(RNFL)thickness in wet age-related macular degeneration(AMD)patients.展开更多
The first way to identify the needle in relation to the peripheral nerve W. Halsted and R. Hall in 1884 performed the first regional blockade (using direct visualization). However, Vassily von Anrep was a few months e...The first way to identify the needle in relation to the peripheral nerve W. Halsted and R. Hall in 1884 performed the first regional blockade (using direct visualization). However, Vassily von Anrep was a few months earlier described the blockade of the peripheral nerve by anatomical landmarks. In 1912, the blockade of the brachial plexus was first performed using electrical stimulation, but this technique has been widely used only since 1962. The most popular way to identify the needle relative to the nerve at the moment remains US guidance. A promising direction may be optical coherence tomography. But this method is under development. In the last decade, a method for determining the pressure of a local anesthetic has been introduced into practice to determine the position of the needle relative to the nerve.展开更多
Based on the numerical simulation analysis, structure parameters of the high pressure fuel pump and common rail as well as flow limiter are designed and the GD-1 high pressure common rail fuel injection system is self...Based on the numerical simulation analysis, structure parameters of the high pressure fuel pump and common rail as well as flow limiter are designed and the GD-1 high pressure common rail fuel injection system is self-developed. Fuel injection characteristics experiment is performed on the GD-1 system. And double-factor variance analysis is applied to investigate the influence of the rail pressure and injection pulse width on the consistency of fuel injection quantity, thus to test whether the design of structure parameters is sound accordingly. The results of experiment and test show that rail pressure and injection pulse width as well as their mutual-effect have no influence on the injection quantity consistency, which proves that the structure parameters design is successful and performance of GD-1 system is sound.展开更多
Objective:To investigate the correlation between the peak pressure of contrast agent injection and tubal patency during real-time three-dimensional hysterosalpingo-contrast sonography.Methods:Seventy female patients w...Objective:To investigate the correlation between the peak pressure of contrast agent injection and tubal patency during real-time three-dimensional hysterosalpingo-contrast sonography.Methods:Seventy female patients who underwent real-time three-dimensional hysterosalpingo-contrast sonography of uterine and oviduct in the department of ultrasound medicine in our hospital were selected to measure the peak pressure in the examination process through the pressure injection device of contrast agent,to compare the pressure differences of different obturability patency degree of oviduct,and to draw a ROC curve to determine the optimal cut-off value of the peak pressure.Results:According to the different patency degree of fallopian tubes,the contrast results were divided into three groups:bilateral tubes unobstructed group,unilateral tube lesioned group and bilateral tubes lesioned group.The peak pressures of the three groups were(34.69±9.30)KPa,(52.71±18.55)KPa and(73.88±11.01)KPa,respectively.The area under the peak pressure ROC curve(AUC)of the"unilateral tube lesioned group"and"bilateral tubes lesioned group"was 0.785,the optimal cut-off value of the peak pressure was 51.90KPa,the area under the peak pressure ROC curve(AUC)of the"unilateral tube lesioned group"and"bilateral tubes lesioned group"was 0.851,and the optimal cut-off value of the peak pressure was 73.50KPa.Conclusion:The peak pressure of contrast agent injection in RT-3D-HyCoSy can be used as a quantitative index to deduce the patency degree of oviduct.There is a correlation between the peak pressure and the tubal patency.展开更多
Cyclic pressure pulsing with nitrogen is studied for hydraulically fractured wells in depleted reservoirs.A compositional simulation model is constructed to represent the hydraulic fractures through local-grid refinem...Cyclic pressure pulsing with nitrogen is studied for hydraulically fractured wells in depleted reservoirs.A compositional simulation model is constructed to represent the hydraulic fractures through local-grid refinement.The process is analyzed from both operational and reservoir/hydraulic-fracture perspectives.Key sensitivity parameters for the operational component are chosen as the injection rate,lengths of injection and soaking periods and the economic rate limit to shut-in the well.For the reservoir/hydraulic fracturing components,reservoir permeability,hydraulic fracture permeability,effective thickness and half-length are used.These parameters are varied at five levels.A full-factorial experimental design is utilized to run 1250 cases.The study shows that within the ranges studied,the gas-injection process is applied successfully for a 20-year project period with net present values based on the incremental recoveries greater than zero.It is observed that the cycle rate limit,injection and soaking periods must be optimized to maximize the efficiency.The simulation results are used to develop a neural network based proxy model that can be used as a screening tool for the process.The proxy model is validated with blind-cases with a correlation coefficient of 0.96.展开更多
Hall plot analysis,as a widespread injection evaluation method,however,often fails to achieve the desired result because of the inconspicuous change of the curve shape.Based on the cumulative injection volume,injectio...Hall plot analysis,as a widespread injection evaluation method,however,often fails to achieve the desired result because of the inconspicuous change of the curve shape.Based on the cumulative injection volume,injection rate,and the injection pressure,this paper establishes a new method using the ratio of the pressure to the injection rate(RPI) and the rate of change of the RPI to evaluate the injection efficiency of chemical flooding.The relationship between the RPI and the apparent resistance factor(apparent residual resistance factor) is obtained,similarly to the relationship between the rate of change of the RPI and the resistance factor.In order to estimate a thief zone in a reservoir,the influence of chemical crossflow on the rate of change of the RPI is analyzed.The new method has been applied successfully in the western part of the Gudong 7th reservoir.Compared with the Hall plot analysis,it is more accurate in real-time injection data interpretation and crossflow estimation.Specially,the rate of change of the RPI could be particularly suitably applied for new wells or converted wells lacking early water flooding history.展开更多
In the process of oilfield water injection volume of injection allocation often appear with the pump displacement situation does not match, the widespread adoption of stator frequency technology allows the pump displa...In the process of oilfield water injection volume of injection allocation often appear with the pump displacement situation does not match, the widespread adoption of stator frequency technology allows the pump displacement and volume of injection allocation phase matching. But the technology in pump class load application speed range is limited, there is still a reflux valve control blind area," turn off undead" problem. " One-for-several" rotor frequency Technique in water injection station application, solved the control blind area problem, the full realization of the variable frequency close return voltage injection, at the same time, the successful implementation of the slip power efficient feedback. Stable water injection pressure of the system, and the electric energy is saved, satisfy the oilfield high efficiency, fine water needs, has a high application value.展开更多
Carbon dots(CDs)show great potential as a new type of oil-displacing agent for unconventional oil and gas development.However,the instability and easy aggregation epitomize the challenges that accompany the applicatio...Carbon dots(CDs)show great potential as a new type of oil-displacing agent for unconventional oil and gas development.However,the instability and easy aggregation epitomize the challenges that accompany the application of CDs in high temperature and high salinity(HT/HS)reservoirs.In this research,novel benzene sulfonate-modified carbon dots(BS-CDs)with remarkable thermal stability and salt resistance were fabricated through an in-situ electrochemical exfoliation method.Molecular simulation verifies that the introduction of benzene sulfonate groups substantially strengthens the electrostatic repulsion between BS-CDs,leading to outstanding dispersibility and stability even at a temperature of 100℃ and salinity of 14×10^(4) mg/L.Core flooding tests show that 0.05 wt.%BS-CDs nanofluid can significantly reduce the water injection pressure by 50.00%and enhanced oil recovery(EOR)to 68.39%under HT/HS conditions.According to the atomic force microscopy(AFM)scanning results,the adhesion force between the core(after BS-CDs treatment)and oil decreased by 11.94 times,indicating that the hydrophilicity of the core surface was increased.In addition,the distribution of the adhesion force curve is more concentrated,which means that the micro-scale wettability of the core changes from oil-wet to more homogeneous water-wet.This study provides a feasible way for the development and application of good thermal stability and salt resistance CDs in unconventional reservoir development.展开更多
The purpose of this study was to analyze the influence of the injection pressure and orifice diameter on the spray characteristics of soybean biodiesel.The macroscopic spray characteristics of the spray tip penetratio...The purpose of this study was to analyze the influence of the injection pressure and orifice diameter on the spray characteristics of soybean biodiesel.The macroscopic spray characteristics of the spray tip penetration(STP)and spray cone angle(SCA)were tested with a high-speed camera system.The microscopic spray characteristics,such as the statistical size distribution,Sauter mean diameter(SMD),representative diameters and dispersion boundary,were obtained using a Malvern laser particle size analyzer(PSA).The test results showed that with an increasing injection pressure,the STP and the SCA of the biodiesel increased,but the curves of size-volume distribution and cumulative volume distribution of the atomized droplets shifted to smaller diameters.The SMD and representative diameters decreased,and the dispersion boundary was reduced.Moreover,with a decreasing orifice diameter,longer STP and smaller SCA values were observed.Similarly,the size distribution curves of the atomized biodiesel droplets shifted to smaller diameters.The SMD and representative diameters were reduced,and the relative size range of the atomized biodiesel droplets was enlarged.Higher injection pressures and smaller orifice diameters improved the biodiesel atomization;however,the smaller orifice diameters caused an inhomogeneous size distribution of the atomized biodiesel droplets.展开更多
Carbon dioxide(CO2) capture and storage(CCS) is considered widely as one of promising options for CO2emissions reduction,especially for those countries with coal-dominant energy mix like China.Injecting and storing a ...Carbon dioxide(CO2) capture and storage(CCS) is considered widely as one of promising options for CO2emissions reduction,especially for those countries with coal-dominant energy mix like China.Injecting and storing a huge volume of CO2in deep formations are likely to cause a series of geomechanical issues,including ground surface uplift,damage of caprock integrity,and fault reactivation.The Shenhua CCS demonstration project in Ordos Basin,China,is the first and the largest full-chain saline aquifer storage project of CO2in Asia.The injection started in 2010 and ended in 2015.during which totally 0.3 million tonnes(Mt) CO2was injected.The project is unique in which CO2was injected into 18 sandstone formations simultaneously and the overlying coal seams will be mined after the injection stopped in 2015.Hence,intense geomechanical studies and monitoring works have been conducted in recent years,including possible damage resulting from the temperature difference between injected CO2and formations,injection induced stress and deformation change,potential failure mode and safety factor,interaction between coal mining and CO2geological storage,determination of injection pressure limit,and surface monitoring by the interferometric synthetic aperture radar(InSAR) technology.In this paper,we first described the background and its geological conditions of the Shenhua CCS demonstration project.Then,we gave an introduction to the coupled thermo-hydro-mechano-chemical(THMC) processes in CO2geological storage,and mapped the key geomechanical issues into the THMC processes accordingly.Next,we proposed a generalized geomechanical research flowchart for CO2geological storage projects.After that,we addressed and discussed some typical geomechanical issues,including design of injection pressure limit.CO2injection induced near-field damage,and interaction between CO2geological storage and coal mining,in the Shenhua CCS demonstration project.Finally,we concluded some insights to this CCS project.展开更多
In this context, recent developments in the coupled three-dimensional(3 D) hydro-mechanical(HM)simulation tool TOUGH-RBSN are presented. This tool is used to model hydraulic fracture in geological media, as observed i...In this context, recent developments in the coupled three-dimensional(3 D) hydro-mechanical(HM)simulation tool TOUGH-RBSN are presented. This tool is used to model hydraulic fracture in geological media, as observed in laboratory-scale tests. The TOUGH-RBSN simulator is based on the effective linking of two numerical methods: TOUGH2, a finite volume method for simulating mass transport within a permeable medium; and a lattice model based on the rigid-body-spring network(RBSN) concept. The method relies on a Voronoi-based discretization technique that can represent fracture development within a permeable rock matrix. The simulator provides two-way coupling of HM processes, including fluid pressure-induced fracture and fracture-assisted flow. We first present the basic capabilities of the modeling approach using two example applications, i.e. permeability evolution under compression deformation, and analyses of a static fracturing simulation. Thereafter, the model is used to simulate laboratory tests of hydraulic fracturing in granite. In most respects, the simulation results meet expectations with respect to permeability evolution and fracturing patterns. It can be seen that the evolution of injection pressure associated with the simulated fracture developments is strongly affected by fluid viscosity.展开更多
In this study,maintaining a constant fuel rate,injection pressure of 275 bar to1000 bar(275 × 10^(2) kPa to 1000× 10^(2) kPa),has been changed.Effect of injection pressure,the pressure inside the cylinder on...In this study,maintaining a constant fuel rate,injection pressure of 275 bar to1000 bar(275 × 10^(2) kPa to 1000× 10^(2) kPa),has been changed.Effect of injection pressure,the pressure inside the cylinder on the free energy,power,engine indicators,particularlyindicators of fuel consumption,pollutants and their effects on parameters affecting the outputof the engine combustion chamber have been studied in droplet diameter.Finally,the effects offuel mixture equivalence,Cantor temperature,soot and NO_(x),due to the increase of injectionpressure,engine efficiency and emissions have been examined.展开更多
In order to study the microscopic pore characteristics of andesite reservoir and the effect of mineral content on the andesite pore,this study takes the andesite of the Huoshiling Formation in Longfengshan of Changlin...In order to study the microscopic pore characteristics of andesite reservoir and the effect of mineral content on the andesite pore,this study takes the andesite of the Huoshiling Formation in Longfengshan of Changling fault depression,Songliao Basin as a subject.The andesite reservoir space was discerned through the observation of cores and casting thin sections.Besides,the pore size distribution of andesites and their mineral contents were quantitatively characterized by high-pressure mercury injection,nitrogen adsorption and XRD,respectively.The results show that:(1)There are various types of reservoir space in andesites,including vesicles,amygdule,intergranular pores,matrix dissolution pores and dissolution pores of amygdala,and three types of fractures including dissolution,structural and explosion fractures.(2)The pore size distribution of andesite is complex.The main pore size of andesite is mid-pore(10-20 nm)with some large-pores(>50 nm).Mid-pore and large-pore provide the main specific surface area,which are the main space for gas storage.(3)The andesite reservoir space in the study area is mainly controlled by dissolution,as supported by the relationship between the change of mineral content and porosity evolution.The porosity of andesites decreases with the increase of quartz and chlorite content,but increases with the increase of soluble mineral,e.g.,feldspar content.展开更多
Isotactic polypropylene(i PP) samples obtained by pressure vibration injection molding(PVIM) and conventional injection molding(CIM) were studied by polarized-light microscopy(PLM), respectively. It was found ...Isotactic polypropylene(i PP) samples obtained by pressure vibration injection molding(PVIM) and conventional injection molding(CIM) were studied by polarized-light microscopy(PLM), respectively. It was found that the alternating bright and dark banded spherulites were generated in the transitional region of PVIM parts. It is the first time that the banded spherulites of isotactic polypropylene were observed in polymer processing. What's more, the banded spherulites were proved to be constituted of α-form crystal by hot stage polarized-light microscopy(HT-PLM) and wide angle X-ray diffraction(WAXD). Morphology of the banded spherulites was also studied by scaning electronical microscopy(SEM).展开更多
In the background of electrothermal-chemical (ETC) emission,an investigation has been conducted on the characteristics of a freely expanding pulsed plasma jet in air.The evolutionary process of the plasma jet is exp...In the background of electrothermal-chemical (ETC) emission,an investigation has been conducted on the characteristics of a freely expanding pulsed plasma jet in air.The evolutionary process of the plasma jet is experimentally investigated using a piezoelectric pressure sensor and a digital high-speed video system.The variation relation in the extended volume,axial displacement and radial displacement of the pulsed plasma jet in atmosphere with time under different discharge voltages and jet breaking pressures is obtained.Based on experiments,a two-dimensional axisymmetric unsteady model is established to analyze the characteristics of the two-phase interface and the variation of flow-field parameters resulting from a pulsed plasma jet into air at a pressure of 1.5-3.5 MPa under three nozzle diameters (3 mm,4 mm and 5 ram,respectively).The images of the plasma jet reveal a changing shape process,from a quasiellipsoid to a conical head and an elongated cylindrical tail.The axial displacement of the jet is always larger than that along the radial direction.The extended volume reveals a single peak distribution with time.Compared to the experiment,the numerical simulation agrees well with the experimental data.The parameters of the jet field mutate at the nozzle exit with a decrease in the parameter pulse near the nozzle,and become more and more gradual and close to environmental parameters.Increasing the injection pressure and nozzle diameter can increase the parameters of the flow field such as the expansion volume of the pulsed plasma jet,the size of the Mach disk and the pressure.In addition,the turbulent mixing in the expansion process is also enhanced.展开更多
文摘Biodiesel fuel is a potential alternative energy source for diesel engines due to its physiochemical characteristics relatively similar to those of traditional diesel fuel.In this study,the performance,emission,and combustion features of a mono cylinder DI diesel engine are assessed using 20%Pumpkin seed methyl ester(PSOME20)and considering varying injection pressures(200,220,240,and 260 bar).The considered Pumpkin seed oil is converted into pumpkin biodiesel by transesterification and then used as fuel.The findings demonstrate that the Brake Thermal Efficiency(BTE)of PSOME20 can be raised by 1.68%,and the carbon monoxide(CO),hydrocarbon(HC),and smoke emanations can be lowered,while oxides of nitrogen(NOx)emissions are increased at an injection pressure(IP)of 240 bar compared to the standard IP of 200 bar.The cylinder pressure and the Heat Release Rate(HRR)become higher at 240 bar,whereas the ignition delay is shortened with respect to PSOME20 at a normal IP of 200 bar.
文摘In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized,including a quaternary ammonium surfactant and a betaine amphoteric surfactant.The composite surfactant system BYJ-1 was formed by mixing two kinds of surfactants.The minimum interfacial tension between BYJ-1 solution and the crude oil could reach 1.4×10^(-3) mN/m.The temperature resistance was up to 140℃,and the salt resistance could reach up to 120 g/L.For the low permeability core fully saturated with water phase,BYJ-1 could obviously reduce the starting pressure gradient of low permeability core.While for the core with residual oil,BYJ-1 could obviously reduce the injection pressure and improve the oil recovery.Moreover,the field test showed that BYJ-1 could effectively reduce the injection pressure of the water injection well,increase the injection volume,and increase the liquid production and oil production of the corresponding production well.
基金Project(Z110803)supported by the State Key Laboratory of Geomechanics and Geotechnical Engineering,ChinaProject(2008AA062303)supported by the National High Technology Research and Development Program of China
文摘A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected.
文摘For the question of applying high-pressure water injection to increase gas extraction efficiency by increasing the permeability of water to drive gas action, an independently designed gas desorption experimental measuring device was used under the condition of external solution invasion. The law of water effect on gas desorption was obtained after water invasion through experiment for the first time. The results show that water's later invasion not only can make the quantity of gas dcsorp- tion greatly reduced, but also can make gas desorption end early. Therefore, when evaluating the applications of high-pressure water injection to increase gas extraction efficiency, we should take water damaging effects on gas desorption into account.
基金Supported by National High Technology Research and Development Program ("863" Program) of China (No.2008AA11A114)
文摘A set of compressed natural gas (CNG) multi-point direct injection system of spark-ignited engines and the corresponding measurement and data acquisition systems were developed in this paper. Based on different injection modes, the mixture formation and combustion of CNG low-pressure direct injection (LPDI) engines were studied under varying factors such as air/ fuel ratio, injection timing. Meanwhile, three-dimensional simulations were adopted to explain the mixture formation mechanisms of CNG low-pressure compound direct injection (LPCDI) mode. On the basis of test results and simulation of the mixture homogeneous degree, the conception of injection window was proposed, and the LPCDI mode was proved to be more beneficial to the mixture concentration stratification formation in cylinder under lean-burning conditions, which resulted in effective combustion and stability.
文摘Dear Sir,Ifound the article by Sobac1etal[1]very interesting.The authors concluded that repeated intravitreal injection(IVI)of ranibizumab or bevacizumab didn’t seem have adverse effects on retinal nerve fiber layer(RNFL)thickness in wet age-related macular degeneration(AMD)patients.
文摘The first way to identify the needle in relation to the peripheral nerve W. Halsted and R. Hall in 1884 performed the first regional blockade (using direct visualization). However, Vassily von Anrep was a few months earlier described the blockade of the peripheral nerve by anatomical landmarks. In 1912, the blockade of the brachial plexus was first performed using electrical stimulation, but this technique has been widely used only since 1962. The most popular way to identify the needle relative to the nerve at the moment remains US guidance. A promising direction may be optical coherence tomography. But this method is under development. In the last decade, a method for determining the pressure of a local anesthetic has been introduced into practice to determine the position of the needle relative to the nerve.
文摘Based on the numerical simulation analysis, structure parameters of the high pressure fuel pump and common rail as well as flow limiter are designed and the GD-1 high pressure common rail fuel injection system is self-developed. Fuel injection characteristics experiment is performed on the GD-1 system. And double-factor variance analysis is applied to investigate the influence of the rail pressure and injection pulse width on the consistency of fuel injection quantity, thus to test whether the design of structure parameters is sound accordingly. The results of experiment and test show that rail pressure and injection pulse width as well as their mutual-effect have no influence on the injection quantity consistency, which proves that the structure parameters design is successful and performance of GD-1 system is sound.
基金Anhui province 2018 key research and opening plan project(No.1804h08020248)。
文摘Objective:To investigate the correlation between the peak pressure of contrast agent injection and tubal patency during real-time three-dimensional hysterosalpingo-contrast sonography.Methods:Seventy female patients who underwent real-time three-dimensional hysterosalpingo-contrast sonography of uterine and oviduct in the department of ultrasound medicine in our hospital were selected to measure the peak pressure in the examination process through the pressure injection device of contrast agent,to compare the pressure differences of different obturability patency degree of oviduct,and to draw a ROC curve to determine the optimal cut-off value of the peak pressure.Results:According to the different patency degree of fallopian tubes,the contrast results were divided into three groups:bilateral tubes unobstructed group,unilateral tube lesioned group and bilateral tubes lesioned group.The peak pressures of the three groups were(34.69±9.30)KPa,(52.71±18.55)KPa and(73.88±11.01)KPa,respectively.The area under the peak pressure ROC curve(AUC)of the"unilateral tube lesioned group"and"bilateral tubes lesioned group"was 0.785,the optimal cut-off value of the peak pressure was 51.90KPa,the area under the peak pressure ROC curve(AUC)of the"unilateral tube lesioned group"and"bilateral tubes lesioned group"was 0.851,and the optimal cut-off value of the peak pressure was 73.50KPa.Conclusion:The peak pressure of contrast agent injection in RT-3D-HyCoSy can be used as a quantitative index to deduce the patency degree of oviduct.There is a correlation between the peak pressure and the tubal patency.
文摘Cyclic pressure pulsing with nitrogen is studied for hydraulically fractured wells in depleted reservoirs.A compositional simulation model is constructed to represent the hydraulic fractures through local-grid refinement.The process is analyzed from both operational and reservoir/hydraulic-fracture perspectives.Key sensitivity parameters for the operational component are chosen as the injection rate,lengths of injection and soaking periods and the economic rate limit to shut-in the well.For the reservoir/hydraulic fracturing components,reservoir permeability,hydraulic fracture permeability,effective thickness and half-length are used.These parameters are varied at five levels.A full-factorial experimental design is utilized to run 1250 cases.The study shows that within the ranges studied,the gas-injection process is applied successfully for a 20-year project period with net present values based on the incremental recoveries greater than zero.It is observed that the cycle rate limit,injection and soaking periods must be optimized to maximize the efficiency.The simulation results are used to develop a neural network based proxy model that can be used as a screening tool for the process.The proxy model is validated with blind-cases with a correlation coefficient of 0.96.
基金the financial support from the National Natural Science Foundation of China (Grant No. 51574269)the Important National Science and Technology Specific Projects of China (Grant No. 2016ZX05011-003)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. 15CX08004A, 13CX05007A)the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT1294)
文摘Hall plot analysis,as a widespread injection evaluation method,however,often fails to achieve the desired result because of the inconspicuous change of the curve shape.Based on the cumulative injection volume,injection rate,and the injection pressure,this paper establishes a new method using the ratio of the pressure to the injection rate(RPI) and the rate of change of the RPI to evaluate the injection efficiency of chemical flooding.The relationship between the RPI and the apparent resistance factor(apparent residual resistance factor) is obtained,similarly to the relationship between the rate of change of the RPI and the resistance factor.In order to estimate a thief zone in a reservoir,the influence of chemical crossflow on the rate of change of the RPI is analyzed.The new method has been applied successfully in the western part of the Gudong 7th reservoir.Compared with the Hall plot analysis,it is more accurate in real-time injection data interpretation and crossflow estimation.Specially,the rate of change of the RPI could be particularly suitably applied for new wells or converted wells lacking early water flooding history.
文摘In the process of oilfield water injection volume of injection allocation often appear with the pump displacement situation does not match, the widespread adoption of stator frequency technology allows the pump displacement and volume of injection allocation phase matching. But the technology in pump class load application speed range is limited, there is still a reflux valve control blind area," turn off undead" problem. " One-for-several" rotor frequency Technique in water injection station application, solved the control blind area problem, the full realization of the variable frequency close return voltage injection, at the same time, the successful implementation of the slip power efficient feedback. Stable water injection pressure of the system, and the electric energy is saved, satisfy the oilfield high efficiency, fine water needs, has a high application value.
基金the National Key Research and Development Program of China(No.2019YFA0708700)the Innovation fund project for graduate student of China University of Petroleum(East China)(No.22CX04050A)the Fundamental Research Funds for the Central Universities,the China National Petroleum Corporation Innovation Found(No.2021DQ02-0205).
文摘Carbon dots(CDs)show great potential as a new type of oil-displacing agent for unconventional oil and gas development.However,the instability and easy aggregation epitomize the challenges that accompany the application of CDs in high temperature and high salinity(HT/HS)reservoirs.In this research,novel benzene sulfonate-modified carbon dots(BS-CDs)with remarkable thermal stability and salt resistance were fabricated through an in-situ electrochemical exfoliation method.Molecular simulation verifies that the introduction of benzene sulfonate groups substantially strengthens the electrostatic repulsion between BS-CDs,leading to outstanding dispersibility and stability even at a temperature of 100℃ and salinity of 14×10^(4) mg/L.Core flooding tests show that 0.05 wt.%BS-CDs nanofluid can significantly reduce the water injection pressure by 50.00%and enhanced oil recovery(EOR)to 68.39%under HT/HS conditions.According to the atomic force microscopy(AFM)scanning results,the adhesion force between the core(after BS-CDs treatment)and oil decreased by 11.94 times,indicating that the hydrophilicity of the core surface was increased.In addition,the distribution of the adhesion force curve is more concentrated,which means that the micro-scale wettability of the core changes from oil-wet to more homogeneous water-wet.This study provides a feasible way for the development and application of good thermal stability and salt resistance CDs in unconventional reservoir development.
基金financially supported by the National Natural Science Foundation of China(51806020)the Youth Innovation Team of Shaanxi Universities(Energy Saving and New Energy Vehicles)the Special Funds for Basic Scientific Research of Central Colleges,Chang’an University(310822172203 and 300102228403)。
文摘The purpose of this study was to analyze the influence of the injection pressure and orifice diameter on the spray characteristics of soybean biodiesel.The macroscopic spray characteristics of the spray tip penetration(STP)and spray cone angle(SCA)were tested with a high-speed camera system.The microscopic spray characteristics,such as the statistical size distribution,Sauter mean diameter(SMD),representative diameters and dispersion boundary,were obtained using a Malvern laser particle size analyzer(PSA).The test results showed that with an increasing injection pressure,the STP and the SCA of the biodiesel increased,but the curves of size-volume distribution and cumulative volume distribution of the atomized droplets shifted to smaller diameters.The SMD and representative diameters decreased,and the dispersion boundary was reduced.Moreover,with a decreasing orifice diameter,longer STP and smaller SCA values were observed.Similarly,the size distribution curves of the atomized biodiesel droplets shifted to smaller diameters.The SMD and representative diameters were reduced,and the relative size range of the atomized biodiesel droplets was enlarged.Higher injection pressures and smaller orifice diameters improved the biodiesel atomization;however,the smaller orifice diameters caused an inhomogeneous size distribution of the atomized biodiesel droplets.
基金the National Natural Science Foundation of China(Grant No.41274111)the Shenhua Group(Grant No.CSCLC-03-JS-2014-08)the National Department Public Benefit Research Foundation of MLR,China(Grant No.201211063-4-1)
文摘Carbon dioxide(CO2) capture and storage(CCS) is considered widely as one of promising options for CO2emissions reduction,especially for those countries with coal-dominant energy mix like China.Injecting and storing a huge volume of CO2in deep formations are likely to cause a series of geomechanical issues,including ground surface uplift,damage of caprock integrity,and fault reactivation.The Shenhua CCS demonstration project in Ordos Basin,China,is the first and the largest full-chain saline aquifer storage project of CO2in Asia.The injection started in 2010 and ended in 2015.during which totally 0.3 million tonnes(Mt) CO2was injected.The project is unique in which CO2was injected into 18 sandstone formations simultaneously and the overlying coal seams will be mined after the injection stopped in 2015.Hence,intense geomechanical studies and monitoring works have been conducted in recent years,including possible damage resulting from the temperature difference between injected CO2and formations,injection induced stress and deformation change,potential failure mode and safety factor,interaction between coal mining and CO2geological storage,determination of injection pressure limit,and surface monitoring by the interferometric synthetic aperture radar(InSAR) technology.In this paper,we first described the background and its geological conditions of the Shenhua CCS demonstration project.Then,we gave an introduction to the coupled thermo-hydro-mechano-chemical(THMC) processes in CO2geological storage,and mapped the key geomechanical issues into the THMC processes accordingly.Next,we proposed a generalized geomechanical research flowchart for CO2geological storage projects.After that,we addressed and discussed some typical geomechanical issues,including design of injection pressure limit.CO2injection induced near-field damage,and interaction between CO2geological storage and coal mining,in the Shenhua CCS demonstration project.Finally,we concluded some insights to this CCS project.
基金partially supported by the National Key Research&Development Plan of China(Grant No.2017YFC0804203)International Cooperation Project of Chinese Academy of Sciences(Grant No.115242KYSB20160024)the Open Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z016003)
文摘In this context, recent developments in the coupled three-dimensional(3 D) hydro-mechanical(HM)simulation tool TOUGH-RBSN are presented. This tool is used to model hydraulic fracture in geological media, as observed in laboratory-scale tests. The TOUGH-RBSN simulator is based on the effective linking of two numerical methods: TOUGH2, a finite volume method for simulating mass transport within a permeable medium; and a lattice model based on the rigid-body-spring network(RBSN) concept. The method relies on a Voronoi-based discretization technique that can represent fracture development within a permeable rock matrix. The simulator provides two-way coupling of HM processes, including fluid pressure-induced fracture and fracture-assisted flow. We first present the basic capabilities of the modeling approach using two example applications, i.e. permeability evolution under compression deformation, and analyses of a static fracturing simulation. Thereafter, the model is used to simulate laboratory tests of hydraulic fracturing in granite. In most respects, the simulation results meet expectations with respect to permeability evolution and fracturing patterns. It can be seen that the evolution of injection pressure associated with the simulated fracture developments is strongly affected by fluid viscosity.
文摘In this study,maintaining a constant fuel rate,injection pressure of 275 bar to1000 bar(275 × 10^(2) kPa to 1000× 10^(2) kPa),has been changed.Effect of injection pressure,the pressure inside the cylinder on the free energy,power,engine indicators,particularlyindicators of fuel consumption,pollutants and their effects on parameters affecting the outputof the engine combustion chamber have been studied in droplet diameter.Finally,the effects offuel mixture equivalence,Cantor temperature,soot and NO_(x),due to the increase of injectionpressure,engine efficiency and emissions have been examined.
基金Supported by Project of National Natural Science Foundation of China(Nos.41972313,41790453).
文摘In order to study the microscopic pore characteristics of andesite reservoir and the effect of mineral content on the andesite pore,this study takes the andesite of the Huoshiling Formation in Longfengshan of Changling fault depression,Songliao Basin as a subject.The andesite reservoir space was discerned through the observation of cores and casting thin sections.Besides,the pore size distribution of andesites and their mineral contents were quantitatively characterized by high-pressure mercury injection,nitrogen adsorption and XRD,respectively.The results show that:(1)There are various types of reservoir space in andesites,including vesicles,amygdule,intergranular pores,matrix dissolution pores and dissolution pores of amygdala,and three types of fractures including dissolution,structural and explosion fractures.(2)The pore size distribution of andesite is complex.The main pore size of andesite is mid-pore(10-20 nm)with some large-pores(>50 nm).Mid-pore and large-pore provide the main specific surface area,which are the main space for gas storage.(3)The andesite reservoir space in the study area is mainly controlled by dissolution,as supported by the relationship between the change of mineral content and porosity evolution.The porosity of andesites decreases with the increase of quartz and chlorite content,but increases with the increase of soluble mineral,e.g.,feldspar content.
文摘Isotactic polypropylene(i PP) samples obtained by pressure vibration injection molding(PVIM) and conventional injection molding(CIM) were studied by polarized-light microscopy(PLM), respectively. It was found that the alternating bright and dark banded spherulites were generated in the transitional region of PVIM parts. It is the first time that the banded spherulites of isotactic polypropylene were observed in polymer processing. What's more, the banded spherulites were proved to be constituted of α-form crystal by hot stage polarized-light microscopy(HT-PLM) and wide angle X-ray diffraction(WAXD). Morphology of the banded spherulites was also studied by scaning electronical microscopy(SEM).
基金supported by National Natural Science Foundation of China(No.51506094)
文摘In the background of electrothermal-chemical (ETC) emission,an investigation has been conducted on the characteristics of a freely expanding pulsed plasma jet in air.The evolutionary process of the plasma jet is experimentally investigated using a piezoelectric pressure sensor and a digital high-speed video system.The variation relation in the extended volume,axial displacement and radial displacement of the pulsed plasma jet in atmosphere with time under different discharge voltages and jet breaking pressures is obtained.Based on experiments,a two-dimensional axisymmetric unsteady model is established to analyze the characteristics of the two-phase interface and the variation of flow-field parameters resulting from a pulsed plasma jet into air at a pressure of 1.5-3.5 MPa under three nozzle diameters (3 mm,4 mm and 5 ram,respectively).The images of the plasma jet reveal a changing shape process,from a quasiellipsoid to a conical head and an elongated cylindrical tail.The axial displacement of the jet is always larger than that along the radial direction.The extended volume reveals a single peak distribution with time.Compared to the experiment,the numerical simulation agrees well with the experimental data.The parameters of the jet field mutate at the nozzle exit with a decrease in the parameter pulse near the nozzle,and become more and more gradual and close to environmental parameters.Increasing the injection pressure and nozzle diameter can increase the parameters of the flow field such as the expansion volume of the pulsed plasma jet,the size of the Mach disk and the pressure.In addition,the turbulent mixing in the expansion process is also enhanced.