期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Pressure Regulation for Earth Pressure Balance Control on Shield Tunneling Machine by Using Adaptive Robust Control 被引量:8
1
作者 XIE Haibo LIU Zhibin YANG Huayong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期598-606,共9页
Most current studies about shield tunneling machine focus on the construction safety and tunnel structure stability during the excavation. Behaviors of the machine itself are also studied, like some tracking control o... Most current studies about shield tunneling machine focus on the construction safety and tunnel structure stability during the excavation. Behaviors of the machine itself are also studied, like some tracking control of the machine. Yet, few works concern about the hydraulic components, especially the pressure and flow rate regulation components. This research focuses on pressure control strategies by using proportional pressure relief valve, which is widely applied on typical shield tunneling machines. Modeling of a commercial pressure relief valve is done. The modeling centers on the main valve, because the dynamic performance is determined by the main valve. To validate such modeling, a frequency-experiment result of the pressure relief valve, whose bandwidth is about 3 Hz, is presented as comparison. The modeling and the frequency experimental result show that it is reasonable to regard the pressure relief valve as a second-order system with two low corner frequencies. PID control, dead band compensation control and adaptive robust control(ARC) are proposed and simulation results are presented. For the ARC, implements by using first order approximation and second order approximation are presented. The simulation results show that the second order approximation implement with ARC can track 4 Hz sine signal very well, and the two ARC simulation errors are within 0.2 MPa. Finally, experiment results of dead band compensation control and adaptive robust control are given. The results show that dead band compensation had about 30° phase lag and about 20% off of the amplitude attenuation. ARC is tracking with little phase lag and almost no amplitude attenuation. In this research, ARC has been tested on a pressure relief valve. It is able to improve the valve's dynamic performances greatly, and it is capable of the pressure control of shield machine excavation. 展开更多
关键词 shield tunneling machine pressure regulation adaptive robust control
下载PDF
Discrete element simulation of mechanical characteristic of conditioned sands in earth pressure balance shield tunneling 被引量:10
2
作者 武力 屈福政 《Journal of Central South University》 SCIE EI CAS 2009年第6期1028-1033,共6页
The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sand... The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sands were reproduced and the slump test and the direct shear test of the conditioned sands were implemented. A DEM equivalent model that can simulate the macro mechanical characteristic of the conditioned sands was proposed,and the corresponding numerical models of the slump test and the shear test were established. By selecting proper DEM model parameters,the errors of the slump values between the simulation results and the test results are in the range of 10.3%-14.3%,and the error of the curves between the shear displacement and the shear stress calculated with the DEM simulation is 4.68%-16.5% compared with that of the laboratory direct shear test. This illustrates that the proposed DEM equivalent model can approximately simulate the mechanical characteristics of the conditioned sands,which provides the basis for further simulation of the interaction between the conditioned soil and the chamber pressure system of the EPB machine. 展开更多
关键词 conditioned sands slump test direct shear test discrete element simulation earth pressure balance shield machine
下载PDF
DS6~*8000K Pressuring Machines
3
《China's Foreign Trade》 1999年第6期44-44,共1页
关键词 DS6 Pressuring machines
下载PDF
Real-time human blood pressure measurement based on laser self-mixing interferometry with extreme learning machine 被引量:2
4
作者 WANG Xiu-lin LÜLi-ping +1 位作者 HU Lu HUANG Wen-cai 《Optoelectronics Letters》 EI 2020年第6期467-470,共4页
In this paper, we present a method based on self-mixing interferometry combing extreme learning machine for real-time human blood pressure measurement. A signal processing method based on wavelet transform is applied ... In this paper, we present a method based on self-mixing interferometry combing extreme learning machine for real-time human blood pressure measurement. A signal processing method based on wavelet transform is applied to extract reversion point in the self-mixing interference signal, thus the pulse wave profile is successfully reconstructed. Considering the blood pressure values are intrinsically related to characteristic parameters of the pulse wave, 80 samples from the MIMIC-II database are used to train the extreme learning machine blood pressure model. In the experiment, 15 measured samples of pulse wave signal are used as the prediction sets. The results show that the errors of systolic and diastolic blood pressure are both within 5 mm Hg compared with that by the Coriolis method. 展开更多
关键词 PROFILE Real-time human blood pressure measurement based on laser self-mixing interferometry with extreme learning machine
原文传递
Effect of back pressure on the grinding performance of abrasive suspension flow machining
5
作者 Ming-Hui Fang Tao Yu Feng-Feng Xi 《Advances in Manufacturing》 SCIE EI CAS CSCD 2022年第1期143-157,共15页
Abrasive suspension flow machining(ASFM)is an advanced finishing method that uses an abrasive suspension slurry for grinding and chamfering as well as the finishing of inaccessible components.This study examines the e... Abrasive suspension flow machining(ASFM)is an advanced finishing method that uses an abrasive suspension slurry for grinding and chamfering as well as the finishing of inaccessible components.This study examines the effect of back pressure on the grinding characteristics of an abrasive suspension flow during the grinding of slender holes.A numerical model was developed to simulate the abrasive suspension flow in a slender hole and was verified experimentally using injector nozzle grinding equipment under different grinding pressures and back pressures.It is shown that the ASFM with back pressure not only eliminates the cavitation flow in the spray hole,but also increases the number of effective abrasive particles and the flow coefficient.Increasing the back pressure during the grinding process can increase the Reynolds number of the abrasive suspension flow and reduce the thickness of the boundary layer in the slender hole.Moreover,increasing the back pressure can improve the flow rate of the injector nozzle and its grinding performance. 展开更多
关键词 Abrasive suspension flow machining(ASFM)Back pressure Injector nozzle Grinding performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部