Spiky spherical nickel powder with sharp nano-tips on its surface is a kind of excellent fillers for developing pressure-sensitive cement-based composites/sensors for traffic detection,structural health monitoring,and...Spiky spherical nickel powder with sharp nano-tips on its surface is a kind of excellent fillers for developing pressure-sensitive cement-based composites/sensors for traffic detection,structural health monitoring,and border and military security.The sharp nano-tips on the surface of spiky spherical nickel particles can induce field emission and tunneling effects,which leads to the ultrahigh pressure-sensitive responses of the cement-based composites.In this paper,we systematically introduce research on nanotip-induced ultrahigh pressure-sensitive cement-based composites/sensors,with attentions to their pressure-sensitive property and sensing mechanism,pressure-sensitive characteristic model,and smart structure system for traffic detection.展开更多
The issue of sensitivity attenuation in high-pressure region has been a persistent concern for pressure-sensitive electronic skins.In order to tackle such trade-off between sensitivity and linear range,herein,a hybrid...The issue of sensitivity attenuation in high-pressure region has been a persistent concern for pressure-sensitive electronic skins.In order to tackle such trade-off between sensitivity and linear range,herein,a hybrid piezoresistive-supercapacitive(HRSC)strategy is proposed via introducing a piezoresistive porous aerogel layer between the charge collecting electrodes and iontronic films of the pressure sensors.Surprisingly,the HRSC-induced impedance regulation and supercapacitive behavior contribute to significant mitigation in sensitivity attenuation,achieving high sensitivity across wide linear range(44.58 kPa^(−1)from 0 to 3 kPa and 23.6 kPa^(−1)from 3 to 12 kPa).The HRSC pressure sensor exhibits a low detection limit of 1 Pa,fast responsiveness(~130 ms),and excellent cycling stability,allowing to detect tiny pressure of air flow,finger bending,and human respiration.Meanwhile,the HRSC sensor exhibits exceptional perception capabilities for proximity and temperature,broadening its application scenarios in prosthetic perception and electronic skin.The proposed HRSC strategy may boost the ongoing research on structural design of high-performance and multimodal electronic sensors.展开更多
Flexible pressure sensors capable of monitoring diverse physiological signals and body movements have garnered tremendous attention in wearable electronic devices.Thereinto,high constant sensitivity over a wide pressu...Flexible pressure sensors capable of monitoring diverse physiological signals and body movements have garnered tremendous attention in wearable electronic devices.Thereinto,high constant sensitivity over a wide pressure range combined with breathability,biocompatibility,biodegradability is pivotal for manufacturing of reliable pressure sensors in practical sensing applications.In this work,inspired by the multilayered structure of skin epidermis,we propose and demonstrate a multi-attribute wearable piezoresistive pressure sensor consisting of multilayered gradient conductive poly(ε-caprolactone)nanofiber membranes composites.In response to externally applied pressure,a layer-by-layer current path is activated inside the multilayered membranes composites,leading to the most salient sensing performance of high constant sensitivity of 33.955 kPa^(−1) within the pressure range of 0–80 kPa.The proposed pressure sensor also exhibits a fast response–relaxation time,a low detection limit,excellent stability,which can be successfully used to measure human physiological signals.Lastly,an integrated sensor array system that can locate objects’positions is constructed and applied to simulate sitting posture monitoring.These results indicate that the proposed pressure sensor holds great potential in health monitoring and wearable electronic devices.展开更多
为提高SOI压阻式压力传感器的灵敏度,对传感器敏感结构的弹性膜片和压敏电阻的形状、尺寸等结构参数进行了优化设计。利用COMSOL Multiphysics多物理场耦合分析软件对优化后的敏感结构进行了静力学仿真与分析,完成了敏感芯片的制备和加...为提高SOI压阻式压力传感器的灵敏度,对传感器敏感结构的弹性膜片和压敏电阻的形状、尺寸等结构参数进行了优化设计。利用COMSOL Multiphysics多物理场耦合分析软件对优化后的敏感结构进行了静力学仿真与分析,完成了敏感芯片的制备和加压测试,测试结果表明:优化后的传感器输出灵敏度为5.98 m V/(V·bar),较原结构输出灵敏度提高了1倍,非线性误差小于0.096%。展开更多
文摘Spiky spherical nickel powder with sharp nano-tips on its surface is a kind of excellent fillers for developing pressure-sensitive cement-based composites/sensors for traffic detection,structural health monitoring,and border and military security.The sharp nano-tips on the surface of spiky spherical nickel particles can induce field emission and tunneling effects,which leads to the ultrahigh pressure-sensitive responses of the cement-based composites.In this paper,we systematically introduce research on nanotip-induced ultrahigh pressure-sensitive cement-based composites/sensors,with attentions to their pressure-sensitive property and sensing mechanism,pressure-sensitive characteristic model,and smart structure system for traffic detection.
基金the National Natural Science Foundation of China(Nos.22104021,52303075,and 22309105)Natural Science Foundation of Shandong Province(No.ZR2023QB227)+1 种基金Department of Science and Technology of Guangdong Province(No.2022A1515110014)Taishan Young Scholar Program(Nos.tsqn202306267 and tsqnz20231235).
文摘The issue of sensitivity attenuation in high-pressure region has been a persistent concern for pressure-sensitive electronic skins.In order to tackle such trade-off between sensitivity and linear range,herein,a hybrid piezoresistive-supercapacitive(HRSC)strategy is proposed via introducing a piezoresistive porous aerogel layer between the charge collecting electrodes and iontronic films of the pressure sensors.Surprisingly,the HRSC-induced impedance regulation and supercapacitive behavior contribute to significant mitigation in sensitivity attenuation,achieving high sensitivity across wide linear range(44.58 kPa^(−1)from 0 to 3 kPa and 23.6 kPa^(−1)from 3 to 12 kPa).The HRSC pressure sensor exhibits a low detection limit of 1 Pa,fast responsiveness(~130 ms),and excellent cycling stability,allowing to detect tiny pressure of air flow,finger bending,and human respiration.Meanwhile,the HRSC sensor exhibits exceptional perception capabilities for proximity and temperature,broadening its application scenarios in prosthetic perception and electronic skin.The proposed HRSC strategy may boost the ongoing research on structural design of high-performance and multimodal electronic sensors.
基金the National Natural Science Foundation of China(Nos.62174068 and 61888102)Rizhao City Key Research and Development Program(No.2021ZDYF010102).
文摘Flexible pressure sensors capable of monitoring diverse physiological signals and body movements have garnered tremendous attention in wearable electronic devices.Thereinto,high constant sensitivity over a wide pressure range combined with breathability,biocompatibility,biodegradability is pivotal for manufacturing of reliable pressure sensors in practical sensing applications.In this work,inspired by the multilayered structure of skin epidermis,we propose and demonstrate a multi-attribute wearable piezoresistive pressure sensor consisting of multilayered gradient conductive poly(ε-caprolactone)nanofiber membranes composites.In response to externally applied pressure,a layer-by-layer current path is activated inside the multilayered membranes composites,leading to the most salient sensing performance of high constant sensitivity of 33.955 kPa^(−1) within the pressure range of 0–80 kPa.The proposed pressure sensor also exhibits a fast response–relaxation time,a low detection limit,excellent stability,which can be successfully used to measure human physiological signals.Lastly,an integrated sensor array system that can locate objects’positions is constructed and applied to simulate sitting posture monitoring.These results indicate that the proposed pressure sensor holds great potential in health monitoring and wearable electronic devices.
文摘为提高SOI压阻式压力传感器的灵敏度,对传感器敏感结构的弹性膜片和压敏电阻的形状、尺寸等结构参数进行了优化设计。利用COMSOL Multiphysics多物理场耦合分析软件对优化后的敏感结构进行了静力学仿真与分析,完成了敏感芯片的制备和加压测试,测试结果表明:优化后的传感器输出灵敏度为5.98 m V/(V·bar),较原结构输出灵敏度提高了1倍,非线性误差小于0.096%。