The current research of abrasive belt grinding rail mainly focuses on the contact mechanism and structural design.Compared with the closed structure abrasive belt grinding,open-structured abrasive belt grinding has ex...The current research of abrasive belt grinding rail mainly focuses on the contact mechanism and structural design.Compared with the closed structure abrasive belt grinding,open-structured abrasive belt grinding has excellent performance in dynamic stability,consistency of grinding quality,extension of grinding mileage and improvement of working efficiency.However,in the contact structure design,the open-structured abrasive belt grinding rail using a profiling pressure grinding plate and the closed structure abrasive belt using the contact wheel are different,and the contact mechanisms of the two are different.In this paper,based on the conformal contact and Hertz theory,the contact mechanism of the pressure grinding plate,abrasive belt and rail is analyzed.Through finite element simulation and static pressure experiment,the contact behavior of pressure grinding plate,abrasive belt and rail under single concentrated force,uniform force and multiple concentrated force was studied,and the distribution characteristics of contact stress on rail surface were observed.The results show that under the same external load,there are three contact areas under the three loading modes.The outer contour of the middle contact area is rectangular,and the inner contour is elliptical.In the contact area at both ends,the stress is extremely small under a single concentrated force,the internal stress is drop-shaped under a uniform force,and the internal stress under multiple concentration forces is elliptical.Compared with the three,the maximum stress is the smallest and the stress distribution is more uniform under multiple concentrated forces.Therefore,the multiple concentrated forces is the best grinding pressure loading mode.The research provides support for the application of rail grinding with open-structured abrasive belt based on pressure grinding plate,such as contact mechanism and grinding pressure mode selection.展开更多
By using steady and transient methods, the total heat fluxes and the distributions of the heat flux were measured experimentally for an argon DC laminar plasma jet impinging normally on a flat plate at atmospheric pre...By using steady and transient methods, the total heat fluxes and the distributions of the heat flux were measured experimentally for an argon DC laminar plasma jet impinging normally on a flat plate at atmospheric pressure. Results show that the total heat fluxes measured with a steady method are a little bit higher than those with a transient method. Numerical simulation work was executed to compare with the experimental results.展开更多
A numerical method is proposed for the elasto-plasticity and pore-pressure coupled analysis on the pull- out behaviors of a plate anchor. The bounding-surface plasticity (BSP) model combined with Blot's consol- ida...A numerical method is proposed for the elasto-plasticity and pore-pressure coupled analysis on the pull- out behaviors of a plate anchor. The bounding-surface plasticity (BSP) model combined with Blot's consol- idation theory is employed to simulate the cyclic loading induced elasto-plastic deformation of the soil skeleton and the accompanying generation/dissipation of the excess pore water pressure. The suction force generated around the anchor due to the cyclic variation of the pore water pressure has much effect on the pullout capacity of the plate anchor. The calculated pullout capacity with the proposed method (i.e., the coupled analysis) gets lower than that with the conventional total stress analysis for the case of long-term sustained loading, but slightly higher for the case of short-term monotonic loading. The cyclic loading induced accumulation of pore water pressure may result in an obvious decrease of the stiffness of the soil-Plate anchor svstem.展开更多
In order to study the water-inrush mechanism of concealed collapse pillars from the mechanical view, a mechanical model for water-inrush of collapse pillars has been established based on thick plate theory of elastic ...In order to study the water-inrush mechanism of concealed collapse pillars from the mechanical view, a mechanical model for water-inrush of collapse pillars has been established based on thick plate theory of elastic mechanics in this paper.By solving this model the deformation of water-resistant rock strata under the action of water pressure and the expression of critical water pressure for collapse pillar waterinrush have been obtained The research results indicate that:the boundary conditions and strength of water-resistant strata play important roles in influencing water-inrush of collapse pillars.The critical water-inrush pressure is determined by both relative thickness and absolute thickness of water-resistant strata.展开更多
Based on the elastic plate theory, a mechanical model of thin plate for the first caving of overlying roof rock in steep mining face was established. The analytical solution of the deflection and stress distribution o...Based on the elastic plate theory, a mechanical model of thin plate for the first caving of overlying roof rock in steep mining face was established. The analytical solution of the deflection and stress distribution of roof rocks was obtained. According to the specific geological conditions of the 5-103 panel in Shanxi,the failure of roof rocks and the influence of seam dip on it during the exploitation were theoretically investigated. Meanwhile, the first caving characteristics of the overlying rock in the steep coal seam were investigated based on its stress contour. The results show that the dip angle has a distinct influence on the caving interval and the first caving interval for the 5-103 panel is 37 m in theory. Finally, a systematic monitoring on the behavior of rock pressures was conducted. The measured results agree well with the theoretical prediction, which provides a good reference for practical steep coal seam mining.展开更多
This article deals with the evaluation of the consumption of energy for a steady state solvent extraction in a novel L-shaped pulsed sieve-plate column, which is highly required for design and optimization of the peri...This article deals with the evaluation of the consumption of energy for a steady state solvent extraction in a novel L-shaped pulsed sieve-plate column, which is highly required for design and optimization of the periodic flow processes for industrial applications. In this regard, a comprehensive evaluation on the energy consumption in case of a pulsed flow for three different chemical systems is conducted and besides the influence of pulsation intensity, the effect of geometrical parameters including the plate spacing and the plate free area is investigated as well. Moreover, the concept of characteristic velocity models at flooding points is evaluated with respect to the variation of pressure drop along the column at different operational conditions.展开更多
A unified theory for calculating the noise radiation of an infinite elastic plate excited by the turbulent boundary layer pressure fluctuations is presented . Using the wave number frequency transfer function to desri...A unified theory for calculating the noise radiation of an infinite elastic plate excited by the turbulent boundary layer pressure fluctuations is presented . Using the wave number frequency transfer function to desribe the whole system , consisting of the plate and the liquid loading, a general expression of the cross spectrum was derived. It is an integral in the complex wave number plane and leads to a sum of the residues at the poles of two types. One pole introduced by the convective ridge of the pressure fluctuations yields a direct transfer component , which is an evanescent wave in liquid because the pole lies in the high wave number region . The other poles introduced by the transfer function of structure produce the radiation field components with the resonance modes of a liquid loaded plate. The pole positions and their residues can be computed approximately by use of the Resonance Scattering Theory . For the case of hydrodynamic noise, where the range of the frequency-thickness product of interest is relatively low , the symmetric zero-order mode dominates the noise radiation.展开更多
基金Supported by Fundamental Research Funds for the Central Universities of China (Grant No.2019JBM050)。
文摘The current research of abrasive belt grinding rail mainly focuses on the contact mechanism and structural design.Compared with the closed structure abrasive belt grinding,open-structured abrasive belt grinding has excellent performance in dynamic stability,consistency of grinding quality,extension of grinding mileage and improvement of working efficiency.However,in the contact structure design,the open-structured abrasive belt grinding rail using a profiling pressure grinding plate and the closed structure abrasive belt using the contact wheel are different,and the contact mechanisms of the two are different.In this paper,based on the conformal contact and Hertz theory,the contact mechanism of the pressure grinding plate,abrasive belt and rail is analyzed.Through finite element simulation and static pressure experiment,the contact behavior of pressure grinding plate,abrasive belt and rail under single concentrated force,uniform force and multiple concentrated force was studied,and the distribution characteristics of contact stress on rail surface were observed.The results show that under the same external load,there are three contact areas under the three loading modes.The outer contour of the middle contact area is rectangular,and the inner contour is elliptical.In the contact area at both ends,the stress is extremely small under a single concentrated force,the internal stress is drop-shaped under a uniform force,and the internal stress under multiple concentration forces is elliptical.Compared with the three,the maximum stress is the smallest and the stress distribution is more uniform under multiple concentrated forces.Therefore,the multiple concentrated forces is the best grinding pressure loading mode.The research provides support for the application of rail grinding with open-structured abrasive belt based on pressure grinding plate,such as contact mechanism and grinding pressure mode selection.
基金he National Natural Science Foundation of China under the grant No. 59836220 and 19975064and endowed with President's Foundati
文摘By using steady and transient methods, the total heat fluxes and the distributions of the heat flux were measured experimentally for an argon DC laminar plasma jet impinging normally on a flat plate at atmospheric pressure. Results show that the total heat fluxes measured with a steady method are a little bit higher than those with a transient method. Numerical simulation work was executed to compare with the experimental results.
基金supported by the National Natural Science Foundation of China(51309213)the 973 program of China (2014CB046200)
文摘A numerical method is proposed for the elasto-plasticity and pore-pressure coupled analysis on the pull- out behaviors of a plate anchor. The bounding-surface plasticity (BSP) model combined with Blot's consol- idation theory is employed to simulate the cyclic loading induced elasto-plastic deformation of the soil skeleton and the accompanying generation/dissipation of the excess pore water pressure. The suction force generated around the anchor due to the cyclic variation of the pore water pressure has much effect on the pullout capacity of the plate anchor. The calculated pullout capacity with the proposed method (i.e., the coupled analysis) gets lower than that with the conventional total stress analysis for the case of long-term sustained loading, but slightly higher for the case of short-term monotonic loading. The cyclic loading induced accumulation of pore water pressure may result in an obvious decrease of the stiffness of the soil-Plate anchor svstem.
基金Projects are supported by the National Basic Research Program of China(No.2007CB209400)the National Natural Science Foundation of China(Nos.50974115,50904065 and 50974107)the 111 Project(No.B07028).
文摘In order to study the water-inrush mechanism of concealed collapse pillars from the mechanical view, a mechanical model for water-inrush of collapse pillars has been established based on thick plate theory of elastic mechanics in this paper.By solving this model the deformation of water-resistant rock strata under the action of water pressure and the expression of critical water pressure for collapse pillar waterinrush have been obtained The research results indicate that:the boundary conditions and strength of water-resistant strata play important roles in influencing water-inrush of collapse pillars.The critical water-inrush pressure is determined by both relative thickness and absolute thickness of water-resistant strata.
基金financially supported by the National Natural Science Foundation of China (Nos. 51374197 and 50774078)the National Basic Research Program of China (No. 2015CB251600)+1 种基金the University Discipline Construction Project of Jiangsu Province, Blue Project of Jiangsu Provincethe Open Foundation of State Key Laboratory of Coal Resources and Sage Mining (No. SKLCRSM12X06)
文摘Based on the elastic plate theory, a mechanical model of thin plate for the first caving of overlying roof rock in steep mining face was established. The analytical solution of the deflection and stress distribution of roof rocks was obtained. According to the specific geological conditions of the 5-103 panel in Shanxi,the failure of roof rocks and the influence of seam dip on it during the exploitation were theoretically investigated. Meanwhile, the first caving characteristics of the overlying rock in the steep coal seam were investigated based on its stress contour. The results show that the dip angle has a distinct influence on the caving interval and the first caving interval for the 5-103 panel is 37 m in theory. Finally, a systematic monitoring on the behavior of rock pressures was conducted. The measured results agree well with the theoretical prediction, which provides a good reference for practical steep coal seam mining.
基金School of Chemical Engineering, College of Engineering, University of Tehran, for the financial support
文摘This article deals with the evaluation of the consumption of energy for a steady state solvent extraction in a novel L-shaped pulsed sieve-plate column, which is highly required for design and optimization of the periodic flow processes for industrial applications. In this regard, a comprehensive evaluation on the energy consumption in case of a pulsed flow for three different chemical systems is conducted and besides the influence of pulsation intensity, the effect of geometrical parameters including the plate spacing and the plate free area is investigated as well. Moreover, the concept of characteristic velocity models at flooding points is evaluated with respect to the variation of pressure drop along the column at different operational conditions.
文摘A unified theory for calculating the noise radiation of an infinite elastic plate excited by the turbulent boundary layer pressure fluctuations is presented . Using the wave number frequency transfer function to desribe the whole system , consisting of the plate and the liquid loading, a general expression of the cross spectrum was derived. It is an integral in the complex wave number plane and leads to a sum of the residues at the poles of two types. One pole introduced by the convective ridge of the pressure fluctuations yields a direct transfer component , which is an evanescent wave in liquid because the pole lies in the high wave number region . The other poles introduced by the transfer function of structure produce the radiation field components with the resonance modes of a liquid loaded plate. The pole positions and their residues can be computed approximately by use of the Resonance Scattering Theory . For the case of hydrodynamic noise, where the range of the frequency-thickness product of interest is relatively low , the symmetric zero-order mode dominates the noise radiation.