期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Comparative Analysis: Trays versus Packed Columns in Pressure-Swing Distillation for the Separation of Tetrahydrofuran, Water and Ethanol Azeotropic Mixture
1
作者 Samuel Oluwaseun Ogunrinde Tolulope Daniel Adekoya Thomas A. Orhadahwe 《World Journal of Engineering and Technology》 2024年第3期798-819,共22页
This paper delves into the comparative study of tray and packed column pressure swing distillation systems, focusing on the separation of a ternary mixture containing ethanol, tetrahydrofuran (THF), and water. The stu... This paper delves into the comparative study of tray and packed column pressure swing distillation systems, focusing on the separation of a ternary mixture containing ethanol, tetrahydrofuran (THF), and water. The study particularly emphasizes the production of 99.5 w/w% tetrahydrofuran from the downstream product of 1,4-butanediol synthesis via diethyl maleate. Pro/II simulation software is utilized to explore various system configurations, including sieve trays, valve trays, and packed columns. Material and energy balances are performed to ascertain stream compositions and energy demands. The investigation encompasses the effects of column operating pressure on condenser and reboiler temperatures, as well as the implications of utility streams. A rigorous distillation model is employed to compare valve tray, sieve tray, and random packing (utilizing Norton Super Intalox) column designs by varying the number of trays, reflux ratio, and second distillation column pressure. Heat exchangers are integrated into the model, and their areas and utility flow rates are computed and integrated into the economic assessment. Economic analysis, guided by Net Present Value (NPV) calculations over a 20-year span, drives the selection of the most cost-effective design. Results demonstrate that while all designs are energy-efficient, the packed column system emerges as the most economical choice, offering a comprehensive framework for the separation process. Furthermore, optimal design configurations and operating conditions for both tray and packed column systems are outlined, providing valuable insights for industrial applications. 展开更多
关键词 Azetrope TETRAHYDROFURAN ETHANOL pressure-swing DISTILLATION Simulation
下载PDF
Economic and entropy production evaluation of extractive distillation and solvent-assisted pressure-swing distillation by multi-objective optimization
2
作者 Yao Wang Qing Ye +2 位作者 Jinlong Li Qingqing Rui Azhi Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期246-259,共14页
Extractive distillation(ED)and solvent-assisted pressure-swing distillation(SA-PSD)are both special distillation processes that perform good at separating pressure-insensitive azeotropes.However,few reported studies h... Extractive distillation(ED)and solvent-assisted pressure-swing distillation(SA-PSD)are both special distillation processes that perform good at separating pressure-insensitive azeotropes.However,few reported studies have compared the performance of the two processes.In this paper,ED processes with N-methylpyrrolidone(NMP)and dimethlac-etamide(DMCA)as entrainer,SA-PSD process with isopropyl-alcohol(IPA)as solvent and SA-PSD process with partial heat integration(PHI-PSD)are proposed to achieve high purity separation of a mixture of cyclohexane/2-butanol system.The optimal operating conditions of the processes are obtained after optimizing with NSGA-Ⅱ algorithm when total annual cost(TAC)and the entropy production of process are set as objectives.The optimal results show that the optimal PHI-PSD process has lower TAC by 28.7% and the lower entropy production by 39.5% than the optimal SA-PSD process while the ED process with NMP as entrainer has lower TAC by 50.9% and the lower entropy production by 56.1% than the optimal SA-PSD process.The optimal results show that the ED process with NMP as entrainer has the best economic and thermodynamic efficiency among the four proposed processes in this paper. 展开更多
关键词 Extractive distillation Solvent-assisted pressure-swing distillation Entropy production NSGA-Ⅱalgorithm Computer simulation
下载PDF
Comparison of continuous homogenous azeotropic and pressure-swing distillation for a minimum azeotropic system ethyl acetate/nhexane separation 被引量:6
3
作者 Liping Lü Lin Zhu +2 位作者 Huimin Liu Hang Li Shirui Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第10期2023-2033,共11页
Continuous homogenous azeotropic distillation(CHAD) and pressure-swing distillation(PSD) are explored to separate a minimum-boiling azeotropic system of ethyl acetate and n-hexane. The CHAD process with acetone as the... Continuous homogenous azeotropic distillation(CHAD) and pressure-swing distillation(PSD) are explored to separate a minimum-boiling azeotropic system of ethyl acetate and n-hexane. The CHAD process with acetone as the entrainer and the PSD process with the pressures of 0.1 MPa and 0.6 MPa in two columns are designed and simulated by Aspen Plus. The operating conditions of the two processes are optimized via a sequential modular approach to obtain the minimum total annual cost(TAC). The computational results show that the partially heat integrated pressure-swing distillation(HIPSD) has reduced in the energy cost and TAC by 40.79% and 35.94%, respectively, than the conventional PSD, and has more greatly reduced the energy cost and TAC by 62.61% and 49.26% respectively compared with the CHAD process. The comparison of CHAD process and partially HIPSD process illustrates that the partially HIPSD has more advantages in averting the product pollution, energy saving, and economy. 展开更多
关键词 Continuous homogenous azeotropic distillation pressure-swing distillation Ethyl acetate/n-hexane Azeotrope
下载PDF
Separation process of butanol-butyl acetate-methyl isobutyl ketone system by the analysis to residual curve and the double effect pressure-swing distillation 被引量:4
4
作者 Chunli Li Yuanyuan Song +3 位作者 Jing Fang Yang Liu Weiyi Su Yuqi Hu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第3期274-277,共4页
The separation of ternary mixture of butanol, butyl acetate, and methyl isobutyl ketone(MIBK) was initially analyzed by the residual curve. In this process, MIBK was chosen as the azeotropic agent during the first ste... The separation of ternary mixture of butanol, butyl acetate, and methyl isobutyl ketone(MIBK) was initially analyzed by the residual curve. In this process, MIBK was chosen as the azeotropic agent during the first step of separation. The optimum mass ratio of extra MIBK was 1.6 in the modified feed stream according to the residual curve. Thus on this condition the top product was butanol-MIBK azeotrope while the bottom product was butyl acetate in the preliminary separation of the mixture. Then the butanol and MIBK azeotrope was separated by the double effect pressureswing distillation with the low pressure column performing at 30 kPa and the atmospheric pressure column at 101 kPa. The optimal operating conditions were then obtained by using Aspen Plus to simulate and optimize the process. The results showed that the mass purities of butanol, butyl acetate, and MIBK were all more than 99% and reached the design requirements. Additionally, compared with the traditional distillation with outside heating, the double effect pressure swing distillation saved the reboiler duty by 48.6% and the condenser duty by 44.6%. 展开更多
关键词 Residual curve Azeotropic distillation pressure-swing distillation Aspen Plus
下载PDF
Design and control of methyl acetate-methanol separation via heat-integrated pressure-swing distillation 被引量:12
5
作者 Zhishan Zhang Qingjun Zhang +2 位作者 Guijie Li Meiling Liu Jun Gao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第11期1584-1599,共16页
Design and control of pressure-swing distillation(PSD) with different heat integration modes for the separation of methyl acetate/methanol azeotrope are explored using Aspen Plus and Aspen Dynamics. First, an optimum ... Design and control of pressure-swing distillation(PSD) with different heat integration modes for the separation of methyl acetate/methanol azeotrope are explored using Aspen Plus and Aspen Dynamics. First, an optimum steady-state separation configuration conditions are obtained via taking the total annual cost(TAC) or total reboiler heat duty as the objective functions. The results show that about 27.68% and 25.40% saving in TAC can be achieved by the PSD with full and partial heat integration compared to PSD without heat integration. Second,temperature control tray locations are obtained according to the sensitivity criterion and singular value decomposition(SVD) analysis and the single-end control structure is effective based on the feed composition sensitivity analysis. Finally, the comparison of dynamic controllability is made among various control structures for PSD with partial and full heat integration. It is shown that both control structures of composition/temperature cascade and pressure-compensated temperature have a good dynamic response performance for PSD with heat integration facing feed flowrate and composition disturbances. However, PSD with full heat integration performs the poor controllability despite of a little bit of economy. 展开更多
关键词 pressure-swing distillation Azeotrope Heat integration Dynamic control Methyl acetate/methanol
下载PDF
Dynamic control analysis of interconnected pressure-swing distillation process with and without heat integration for separating azeotrope
6
作者 Jingwei Yang Zhengkun Hou +5 位作者 Yao Dai Kang Ma Peizhe Cui Yinglong Wang Zhaoyou Zhu Jun Gao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第1期67-76,共10页
Dynamic controls of pressure-swing distillation with an intermediate connection(PSDIC) process of ethyl acetate and ethanol separation were investigated.The double temperature/composition cascade control structure can... Dynamic controls of pressure-swing distillation with an intermediate connection(PSDIC) process of ethyl acetate and ethanol separation were investigated.The double temperature/composition cascade control structure can perfectly implement effective control when ±20% feed disturbances were introduced.This control structure did not require the control of the flowrate of the side stream.The dynamic controllability of PSDIC with partial heat integration(PHIPSDIC) was also explored.The improved control structure can effectively control ±20% feed disturbances.However,in industrial production,simple controller,sensitive and easy to operate,is the optimal target.To avoid the use of component controllers or complex control structure,the original product purities could be maintained using the basic control structure for the PSDIC process if the product purities in steady state were properly increased,albeit by incurring a slight rise in the total annual cost(TAC).This alternative method without a composition controller combined with the energy-saving PSDIC process provides a simple and effective control scheme in industrial production. 展开更多
关键词 AZEOTROPE pressure-swing distillation Dynamic controllability Control structure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部