Expansion joints silicone sealants used in high speed railway construction suffer from ultraviolet radiation(UV), high temperature combined with the alkaline environment. To evaluate the durability and analyse the a...Expansion joints silicone sealants used in high speed railway construction suffer from ultraviolet radiation(UV), high temperature combined with the alkaline environment. To evaluate the durability and analyse the ageing mechanism, six one-component silicone sealants from different companies were selected and subjected to accelerated ageing tests including UV, thermal and alkali ageing treatments. The ageing effects on the performance of the sealants were evaluated via the appearance and the mechanical property changes. The changes in molecular structure were studied by means of Fourier transform infrared spectroscopy(FTIR), differential scanning calorimetry(DSC) and thermogravimetry(TG). This study revealed that different materials displayed different sensibilities to the ageing methods, in which 15 %-20 % decreases of mechanical properties could be observed under UV radiation test, owning the most significant effects. Structure analysis showed that the physical changes of aggregative states were the principal factors to the performance, along with the chemical slight changes. The glossiness dropped significantly in ageing test, which could be used as one of the effective evaluation parameters for ageing conditions in the field.展开更多
Damage alarming and safety evaluation using long-term monitoring data is an area of significant research activity for long-span bridges. In order to extend the research in this field, the damage alarming technique for...Damage alarming and safety evaluation using long-term monitoring data is an area of significant research activity for long-span bridges. In order to extend the research in this field, the damage alarming technique for bridge expansion joints based on long-term monitoring data was developed. The effects of environmental factors on the expansion joint displacement were analyzed. Multiple linear regression models were obtained to describe the correlation between displacements and the dominant environmental factors. The damage alarming index was defined based on the multiple regression models. At last, the X-bar control chart was utilized to detect the abnormal change of the displacements. Analysis results reveal that temperature and traffic condition are the dominant environmental factors to influence the displacement. When the confidence level of X-bar control chart is set to be 0.003, the false-positive indications of damage can be avoided. The damage sensitivity analysis shows that the proper X-bar control chart can detect 0.1 cm damage-induced change of the expansion joint displacement. It is reasonably believed that the proposed technique is robust against false-positive indication of damage and suitable to alarm the possible future damage of the expansion joints.展开更多
The expansion joints are expected to have movement capacity, bearing capacity for static and dynamic loading, water-tightness, low noise emission and traffic safety. In particular, the failure due to impact loading is...The expansion joints are expected to have movement capacity, bearing capacity for static and dynamic loading, water-tightness, low noise emission and traffic safety. In particular, the failure due to impact loading is the main reason for the observed damages. The problem of dynamic behavior of the expansion joints is so complex that we shall focus our attention on the impact factor for vehicle load that is governed by traffic impact. In order to overcome this difficulty, the cantilever-toothed aluminum joint (finger joint) is one of the promising joints under impact loading. In this study, from the viewpoint of design methodology, numerical studies for impact behavior were conducted for aluminum alloy expansion joints with perforated dowels. The design impact factor for the expansion joints with the perforated dowels against traffic impact loading was examined by using numerical simulations.展开更多
The influence of expansion joints on the welding residual stress at the tube-plate junction of an exhaust gas recirculation(EGR)cooler was studied by numerical simulation method.The simulation results show that the ex...The influence of expansion joints on the welding residual stress at the tube-plate junction of an exhaust gas recirculation(EGR)cooler was studied by numerical simulation method.The simulation results show that the expansion joints set on the housing of the EGR cooler mainly for the sake of protecting the tube-plate joints from bearing additional heating stress can also reduce the welding residual tensile stress.The expansion joints set on the EGR cooler can mitigate the tensile force acting on the edges of the main plates through its elastic extension,and thus reduce the magnitude of welding residual tensile stress at the tube-plate junction.展开更多
In design phases, expansion joints are required to have movement capacity, bearing capacity for static and dynamic loading, watertight, low noise emission and traffic safety. On the basis of the fact that failure due ...In design phases, expansion joints are required to have movement capacity, bearing capacity for static and dynamic loading, watertight, low noise emission and traffic safety. On the basis of the fact that failure due to dynamic loading is the main reason for the observed damages, attention is focused on the bearing capacity for dynamic loading governed by impact, because it differs from the static loading. In this study, from the viewpoint of durability, experimental studies for dynamic behavior were conducted for aluminium alloy expansion joints with perforated dowels. The validity of the perforated dowels against traffic impact loading was confirmed by both experimental and numerical studies.展开更多
The article summarizes related research results and achievements of elastomer expansion device in railway bridge and puts forward a new idea of using polyurethane elastomer material to seal concrete bridge joints betw...The article summarizes related research results and achievements of elastomer expansion device in railway bridge and puts forward a new idea of using polyurethane elastomer material to seal concrete bridge joints between adjacent spans in heavy haul railways. The new type expansion device is composed of polyurethane elastomer material and named TTXF (elastomer expansion joint). In theory, researchers find out expansion joint deformation regularity between adjacent bridge spans through theoretical analysis and detection in heavy haul railways, such as Datong-Qinhuangdao Railway and Shenchi-Huanghua Port Railway. Fatigue tests prove that TTXF can adapt to permanent and dynamic deformation. On the other hand, it has been successfully applied in the test section of Central South of Shanxi Railway Passage and continuous monitoring has been conducted in extreme weather for over one year. The expansion joint has a good effect practically.展开更多
BASF and Sinopec began the construction for the expansion of their joint venture,BASF-YPC Co.,Ltd. (BYC). BASF and Sinopec plan to jointly invest approximately $1.4 billion
基金Funded by National Natural Science Foundation of China(Nos.51578545,51378499 and 51708557)Technological Research and Development Programs of China Railways Corporation(Nos.2008G031-N,2013G008-A-3)Technological Research and Development Programs of China Academy of Railways Sciences(Nos.2012YJ025,2016YJ047)
文摘Expansion joints silicone sealants used in high speed railway construction suffer from ultraviolet radiation(UV), high temperature combined with the alkaline environment. To evaluate the durability and analyse the ageing mechanism, six one-component silicone sealants from different companies were selected and subjected to accelerated ageing tests including UV, thermal and alkali ageing treatments. The ageing effects on the performance of the sealants were evaluated via the appearance and the mechanical property changes. The changes in molecular structure were studied by means of Fourier transform infrared spectroscopy(FTIR), differential scanning calorimetry(DSC) and thermogravimetry(TG). This study revealed that different materials displayed different sensibilities to the ageing methods, in which 15 %-20 % decreases of mechanical properties could be observed under UV radiation test, owning the most significant effects. Structure analysis showed that the physical changes of aggregative states were the principal factors to the performance, along with the chemical slight changes. The glossiness dropped significantly in ageing test, which could be used as one of the effective evaluation parameters for ageing conditions in the field.
基金Project(2009BAG15B03) supported by the National Science and Technology Ministry of ChinaProjects(51178100, 51078080) supported by the National Natural Science Foundation of China+1 种基金Project(BK2011141) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject(12KB02) supported by the Open Fund of the Key Laboratory for Safety Control of Bridge Engineering(Changsha University of Science and Technology), Ministry of Education, China
文摘Damage alarming and safety evaluation using long-term monitoring data is an area of significant research activity for long-span bridges. In order to extend the research in this field, the damage alarming technique for bridge expansion joints based on long-term monitoring data was developed. The effects of environmental factors on the expansion joint displacement were analyzed. Multiple linear regression models were obtained to describe the correlation between displacements and the dominant environmental factors. The damage alarming index was defined based on the multiple regression models. At last, the X-bar control chart was utilized to detect the abnormal change of the displacements. Analysis results reveal that temperature and traffic condition are the dominant environmental factors to influence the displacement. When the confidence level of X-bar control chart is set to be 0.003, the false-positive indications of damage can be avoided. The damage sensitivity analysis shows that the proper X-bar control chart can detect 0.1 cm damage-induced change of the expansion joint displacement. It is reasonably believed that the proposed technique is robust against false-positive indication of damage and suitable to alarm the possible future damage of the expansion joints.
文摘The expansion joints are expected to have movement capacity, bearing capacity for static and dynamic loading, water-tightness, low noise emission and traffic safety. In particular, the failure due to impact loading is the main reason for the observed damages. The problem of dynamic behavior of the expansion joints is so complex that we shall focus our attention on the impact factor for vehicle load that is governed by traffic impact. In order to overcome this difficulty, the cantilever-toothed aluminum joint (finger joint) is one of the promising joints under impact loading. In this study, from the viewpoint of design methodology, numerical studies for impact behavior were conducted for aluminum alloy expansion joints with perforated dowels. The design impact factor for the expansion joints with the perforated dowels against traffic impact loading was examined by using numerical simulations.
基金This work was supported by the Guangdong Innovative and Entrepreneurial Research Team Program(No.2016ZT06G025)Guangdong Natural Science Foundation(NO: 2017B030306014).
文摘The influence of expansion joints on the welding residual stress at the tube-plate junction of an exhaust gas recirculation(EGR)cooler was studied by numerical simulation method.The simulation results show that the expansion joints set on the housing of the EGR cooler mainly for the sake of protecting the tube-plate joints from bearing additional heating stress can also reduce the welding residual tensile stress.The expansion joints set on the EGR cooler can mitigate the tensile force acting on the edges of the main plates through its elastic extension,and thus reduce the magnitude of welding residual tensile stress at the tube-plate junction.
文摘In design phases, expansion joints are required to have movement capacity, bearing capacity for static and dynamic loading, watertight, low noise emission and traffic safety. On the basis of the fact that failure due to dynamic loading is the main reason for the observed damages, attention is focused on the bearing capacity for dynamic loading governed by impact, because it differs from the static loading. In this study, from the viewpoint of durability, experimental studies for dynamic behavior were conducted for aluminium alloy expansion joints with perforated dowels. The validity of the perforated dowels against traffic impact loading was confirmed by both experimental and numerical studies.
文摘The article summarizes related research results and achievements of elastomer expansion device in railway bridge and puts forward a new idea of using polyurethane elastomer material to seal concrete bridge joints between adjacent spans in heavy haul railways. The new type expansion device is composed of polyurethane elastomer material and named TTXF (elastomer expansion joint). In theory, researchers find out expansion joint deformation regularity between adjacent bridge spans through theoretical analysis and detection in heavy haul railways, such as Datong-Qinhuangdao Railway and Shenchi-Huanghua Port Railway. Fatigue tests prove that TTXF can adapt to permanent and dynamic deformation. On the other hand, it has been successfully applied in the test section of Central South of Shanxi Railway Passage and continuous monitoring has been conducted in extreme weather for over one year. The expansion joint has a good effect practically.
文摘BASF and Sinopec began the construction for the expansion of their joint venture,BASF-YPC Co.,Ltd. (BYC). BASF and Sinopec plan to jointly invest approximately $1.4 billion