A dynamic test on externally prestressed simply supported concrete beams separately with three typical types of tendon distributions was conducted. The results show that the natural frequencies of the beams increase w...A dynamic test on externally prestressed simply supported concrete beams separately with three typical types of tendon distributions was conducted. The results show that the natural frequencies of the beams increase with the increase in the prestressing force at the tensioning stage, and the natural frequencies decrease after the cracks occur in the beams. Following the calculation formula of natural frequency of externally prestressed beam, which was reported in a literature, the natural frequencies of the experimental beams are calculated, and big errors are found between the test results and the calculated ones of natural frequency values. As a result, this paper has tried to adopt two methods to correct the rigidity parameter of the concrete beam in the formula for natural frequency calculation, and to use the corrected formula to calculate the frequencies of the experimental beams. The calculation results indicate a good consistency with the experimental ones, which verifies the feasibility of the corrected formula.展开更多
A full-range nonlinear analysis method for fatigue damage in prestressed concrete beams is presented. New damage accumulation models are proposed to describe the fatigue damage evolution in concrete and reinforcement ...A full-range nonlinear analysis method for fatigue damage in prestressed concrete beams is presented. New damage accumulation models are proposed to describe the fatigue damage evolution in concrete and reinforcement respectively. Based on the stress analysis for cross section, the stress redistrbution in the fatigue damage process, due to the different damage mechanisms of concrete and reinforcement, is considered. The nonlinear damage analysis is achieved by means of piecewise linearity, and it is applicable on the condition of repeated loadings with variable amplitude. Fatigue damage modeling of a beam is implemented to illustrate that the proposed method can preferably fit the experimental results.展开更多
Analyses and computations of the natural frequencies of external prestressed concrete structures are the bases for studying the dynamic properties of such structures. We carded out dynamic tests on three types of exte...Analyses and computations of the natural frequencies of external prestressed concrete structures are the bases for studying the dynamic properties of such structures. We carded out dynamic tests on three types of external simply supported beams, pulling the beams gradually. Then vertical loads were applied to the beams while the frequencies and related coefficients were measured at every step. We calculated natural frequencies and the results indicate that natural frequencies increase as the prestressing force rises in the pre-crack stage, and decrease significantly during the post-crack stage. Substantial incoincidences exist between the calculated and experimental results for the frequency and its tendency to changel Based on the experimental results, we modified the stiffness and other parameters in the equations. The results calculated using the modified equations agree with experimental results well, so the modified eauations can be used nractically.展开更多
Prestressed steel ultrahigh-strength reinforced concrete(PSURC) beam is a new type of prestressed concrete beam, which not only has a considerable compressive strength attributed to the ultrahigh strength concrete, bu...Prestressed steel ultrahigh-strength reinforced concrete(PSURC) beam is a new type of prestressed concrete beam, which not only has a considerable compressive strength attributed to the ultrahigh strength concrete, but also ensures a certain degree of ductility at failure due to the existence of structural steel. Five of these beams were monotonically tested until shear failure to investigate the static shear performance including the failure pattern, loaddeflection behavior, shear capacity, shear crack width and shear ductility. The experimental results show that these beams have superior shear capacity, crack control ability and shear ductility. To study the shear performance under repeated overloading, seven PSURC beams were loaded in cyclic test simultaneously. The overall shear performance of cycled beams is similar to that of uncycled beams at low load level but different at high load level. The shear capacity and crack control ability of cycled beams at high load level are reduced, whereas the shear ductility is improved. In addition, the influences of variables including the degree of prestress, stirrup ratio and load level on the shear performance of both uncycled and cycled beams were also discussed and compared, respectively.展开更多
In order to investigate and research the fatigue cracking of prestressed concrete fatigue properties and loading and stiffness degeneration process,cyclic loading tests were carried out on six prestressed concrete bea...In order to investigate and research the fatigue cracking of prestressed concrete fatigue properties and loading and stiffness degeneration process,cyclic loading tests were carried out on six prestressed concrete beams and the stiffness degradation under fatigue was investigated. A simulation model of stiffness degradation is proposed based on the stiffness analysis of the fatigue-damaged section. The elastic modulus of damaged concrete and the effective residual area of steel were introduced as well as an adjusted three-stage concrete fatigue damage evolution model. The strip method was used to analyze concrete damage due to changing stress along the depth of the beam section. The simulation and test results were compared and a method of predicting fatigue deflection was presented based on the simulation model. The predicted results were compared with that of the neural network method. It is in good agreement for the simulation results with the test results. It is only less than5% error for the simulation model which can reveal the two-stage degradation of prestressed concrete beams under cyclic loading. It is more precise for the simulation prediction method under proper conditions.展开更多
The design scheme of long span and low depth composite steel concrete beams is introduced, and the methods of avoiding the cracking of concrete deck in the negative moment regions are proposed. Moreover, significa...The design scheme of long span and low depth composite steel concrete beams is introduced, and the methods of avoiding the cracking of concrete deck in the negative moment regions are proposed. Moreover, significant exploration for problems of the composite beams has been made, such as optimizing construction steps to regulate the stress, applying jacking technique to exert prestress on the concrete deck, investigating the uplifting force principle of the shear connectors by means of model test and non linear finite element analysis, and pointing out the countermeasure to reduce tension force of the shear connectors.展开更多
基金supported by the National Natural Science Foundation of China (No.50808090)
文摘A dynamic test on externally prestressed simply supported concrete beams separately with three typical types of tendon distributions was conducted. The results show that the natural frequencies of the beams increase with the increase in the prestressing force at the tensioning stage, and the natural frequencies decrease after the cracks occur in the beams. Following the calculation formula of natural frequency of externally prestressed beam, which was reported in a literature, the natural frequencies of the experimental beams are calculated, and big errors are found between the test results and the calculated ones of natural frequency values. As a result, this paper has tried to adopt two methods to correct the rigidity parameter of the concrete beam in the formula for natural frequency calculation, and to use the corrected formula to calculate the frequencies of the experimental beams. The calculation results indicate a good consistency with the experimental ones, which verifies the feasibility of the corrected formula.
文摘A full-range nonlinear analysis method for fatigue damage in prestressed concrete beams is presented. New damage accumulation models are proposed to describe the fatigue damage evolution in concrete and reinforcement respectively. Based on the stress analysis for cross section, the stress redistrbution in the fatigue damage process, due to the different damage mechanisms of concrete and reinforcement, is considered. The nonlinear damage analysis is achieved by means of piecewise linearity, and it is applicable on the condition of repeated loadings with variable amplitude. Fatigue damage modeling of a beam is implemented to illustrate that the proposed method can preferably fit the experimental results.
基金Funded by the National Science Foundation of China (No. 50808090)
文摘Analyses and computations of the natural frequencies of external prestressed concrete structures are the bases for studying the dynamic properties of such structures. We carded out dynamic tests on three types of external simply supported beams, pulling the beams gradually. Then vertical loads were applied to the beams while the frequencies and related coefficients were measured at every step. We calculated natural frequencies and the results indicate that natural frequencies increase as the prestressing force rises in the pre-crack stage, and decrease significantly during the post-crack stage. Substantial incoincidences exist between the calculated and experimental results for the frequency and its tendency to changel Based on the experimental results, we modified the stiffness and other parameters in the equations. The results calculated using the modified equations agree with experimental results well, so the modified eauations can be used nractically.
基金Supported by the National Natural Science Foundation of China(No.51078059)
文摘Prestressed steel ultrahigh-strength reinforced concrete(PSURC) beam is a new type of prestressed concrete beam, which not only has a considerable compressive strength attributed to the ultrahigh strength concrete, but also ensures a certain degree of ductility at failure due to the existence of structural steel. Five of these beams were monotonically tested until shear failure to investigate the static shear performance including the failure pattern, loaddeflection behavior, shear capacity, shear crack width and shear ductility. The experimental results show that these beams have superior shear capacity, crack control ability and shear ductility. To study the shear performance under repeated overloading, seven PSURC beams were loaded in cyclic test simultaneously. The overall shear performance of cycled beams is similar to that of uncycled beams at low load level but different at high load level. The shear capacity and crack control ability of cycled beams at high load level are reduced, whereas the shear ductility is improved. In addition, the influences of variables including the degree of prestress, stirrup ratio and load level on the shear performance of both uncycled and cycled beams were also discussed and compared, respectively.
基金Sponsored by the National Natural Science Foundation of China(Grant No.5117804251308159+4 种基金51578047)the National High Technology Research and Development Program Project(Grant No.2008AA11Z102)China Railway Corporation Research and Development of Science and Technology Plan Project(Grant No.2014G004-B)China Communications Construction Co.LTD Science and Technology Research and Development Projects(Grant No.2014-ZJKJ-03)
文摘In order to investigate and research the fatigue cracking of prestressed concrete fatigue properties and loading and stiffness degeneration process,cyclic loading tests were carried out on six prestressed concrete beams and the stiffness degradation under fatigue was investigated. A simulation model of stiffness degradation is proposed based on the stiffness analysis of the fatigue-damaged section. The elastic modulus of damaged concrete and the effective residual area of steel were introduced as well as an adjusted three-stage concrete fatigue damage evolution model. The strip method was used to analyze concrete damage due to changing stress along the depth of the beam section. The simulation and test results were compared and a method of predicting fatigue deflection was presented based on the simulation model. The predicted results were compared with that of the neural network method. It is in good agreement for the simulation results with the test results. It is only less than5% error for the simulation model which can reveal the two-stage degradation of prestressed concrete beams under cyclic loading. It is more precise for the simulation prediction method under proper conditions.
文摘The design scheme of long span and low depth composite steel concrete beams is introduced, and the methods of avoiding the cracking of concrete deck in the negative moment regions are proposed. Moreover, significant exploration for problems of the composite beams has been made, such as optimizing construction steps to regulate the stress, applying jacking technique to exert prestress on the concrete deck, investigating the uplifting force principle of the shear connectors by means of model test and non linear finite element analysis, and pointing out the countermeasure to reduce tension force of the shear connectors.