随着低压配电网的改造升级,台区户变关系变化频繁,为解决时有发生的用户台区挂错现象,提出一种利用改进的基于密度的点排序识别聚类结构(ordering points to identify the clustering structure,OPTICS)的台区户变关系识别和相别识别方...随着低压配电网的改造升级,台区户变关系变化频繁,为解决时有发生的用户台区挂错现象,提出一种利用改进的基于密度的点排序识别聚类结构(ordering points to identify the clustering structure,OPTICS)的台区户变关系识别和相别识别方法。首先,对配网电压序列的相关性进行定性分析,提出利用电压时序序列作为分析识别的数据基础;其次,采用改进的自适应分段聚合近似(adaptive piecewise aggregate approximation,APAA)对电压序列进行降维处理,提取能够反映电压特征的低维向量;然后利用改进的OPTICS算法对所提取的特征向量进行聚类分析,识别台区的户变关系和相别关系;最后,基于实际的台区数据进行算例分析,验证了所提方法的准确性。展开更多
分析了空间低轨目标群的运行特点,提出了基于时序向量相似性的空间目标群匹配算法,提高了对低轨巨型星座的识别管理能力。首先,介绍了时序向量的降维方法,将目标群高维观测时序向量简化为空间构型序列;而后,提出了基于动态时间规整(Dyna...分析了空间低轨目标群的运行特点,提出了基于时序向量相似性的空间目标群匹配算法,提高了对低轨巨型星座的识别管理能力。首先,介绍了时序向量的降维方法,将目标群高维观测时序向量简化为空间构型序列;而后,提出了基于动态时间规整(Dynamic Time Warping,DTW)的目标群空间构型序列相似性判别算法;最后,利用星链卫星目标群仿真和实测数据对算法的匹配能力进行验证。结果表明该算法可实现空间目标群监测数据快速匹配,仿真数据匹配过程中,在群内目标缺失30%的条件下匹配成功率可达100%,在低缺失条件下(缺失率5%以内)群内目标识别成功率平均超过75%;实测数据匹配成功率可达100%。展开更多
文摘随着全球气候变暖加剧,北极地区的大气海洋环境剧烈变化,导致海冰变化更加不稳定,使得海冰预测的难度增大。本研究选择海表温度、2 m平均气温、二氧化碳浓度为大气海洋变量,海冰范围距平为时序特征参数,将上述参量作为北极海冰范围(Sea Ice Extent,SIE)的预测要素,建立了面向SIE的多变量长短期记忆(Long Short Term Memory,LSTM)神经网络模型,对比分析了2015-2021年不同时间序列预测模型的预测结果。结果显示:本研究所构建模型的RMSE、MAE、MAPE分别为0.353×106 km2、0.261×106 km2和3.191%。相比于其他预测模型,结合大气海洋变量和时序特征参数后的LSTM模型预测结果误差更小,拟合效果更好,可以消除夏季海冰剧烈变化对预测效果的影响,提高海冰范围的预测精度,对北极航道的通航安全保障工作具有重要的研究与应用价值。
文摘随着低压配电网的改造升级,台区户变关系变化频繁,为解决时有发生的用户台区挂错现象,提出一种利用改进的基于密度的点排序识别聚类结构(ordering points to identify the clustering structure,OPTICS)的台区户变关系识别和相别识别方法。首先,对配网电压序列的相关性进行定性分析,提出利用电压时序序列作为分析识别的数据基础;其次,采用改进的自适应分段聚合近似(adaptive piecewise aggregate approximation,APAA)对电压序列进行降维处理,提取能够反映电压特征的低维向量;然后利用改进的OPTICS算法对所提取的特征向量进行聚类分析,识别台区的户变关系和相别关系;最后,基于实际的台区数据进行算例分析,验证了所提方法的准确性。
文摘分析了空间低轨目标群的运行特点,提出了基于时序向量相似性的空间目标群匹配算法,提高了对低轨巨型星座的识别管理能力。首先,介绍了时序向量的降维方法,将目标群高维观测时序向量简化为空间构型序列;而后,提出了基于动态时间规整(Dynamic Time Warping,DTW)的目标群空间构型序列相似性判别算法;最后,利用星链卫星目标群仿真和实测数据对算法的匹配能力进行验证。结果表明该算法可实现空间目标群监测数据快速匹配,仿真数据匹配过程中,在群内目标缺失30%的条件下匹配成功率可达100%,在低缺失条件下(缺失率5%以内)群内目标识别成功率平均超过75%;实测数据匹配成功率可达100%。