Accurate carbon price forecasting is essential to provide the guidance for production and investment.Current research is mainly dependent on plenty of historical samples of carbon prices,which is impractical for the n...Accurate carbon price forecasting is essential to provide the guidance for production and investment.Current research is mainly dependent on plenty of historical samples of carbon prices,which is impractical for the newly launched carbon market due to its short history.Based on the idea of transfer learning,this paper proposes a novel price forecasting model,which utilizes the correlation between the new and mature markets.The model is firstly pretrained on large data of mature market by gated recurrent unit algorithm,and then fine-tuned by the target market samples.An integral framework,including complexity decomposition method for data pre-processing,sample entropy for feature selection,and support vector regression for result post-processing,is provided.In the empirical analysis of new Chinese market,the root mean square error,mean absolute error,mean absolute percentage error,and determination coefficient of the model are 0.529,0.476,0.717%and 0.501 respectively,proving its validity.展开更多
Garlic prices fluctuate dramatically in recent years and it is very difficult to predict garlic prices.The autoregressive integrated moving average(ARIMA)model is currently the most important method for predicting gar...Garlic prices fluctuate dramatically in recent years and it is very difficult to predict garlic prices.The autoregressive integrated moving average(ARIMA)model is currently the most important method for predicting garlic prices.However,the ARIMA model can only predict the linear part of the garlic prices,and cannot predict its nonlinear part.Therefore,it is urgent to adopt a method to analyze the nonlinear characteristics of garlic prices.After comparing the advantages and disadvantages of several major prediction models which used to forecast nonlinear time series,using support vector machine(SVM)model to predict the nonlinear part of garlic prices and establish ARIMA-SVM hybrid forecast model to predict garlic prices.The monthly average price data of garlic in 2010-2017 was used to test the effect of ARIMA model,SVM model and ARIMA-SVM model.The experimental results show that:(1)Garlic price is affected by many factors but the most is the supply and demand relationship;(2)The SVM model has a good effect in dealing with the nonlinear relationship of garlic prices;(3)The ARIMA-SVM hybrid model is better than the single ARIMA model and SVM model on the accuracy of garlic price prediction,it can be used as an effective method to predict the short-term price of garlic.展开更多
In the Smart Grid(SG)residential environment,consumers change their power consumption routine according to the price and incentives announced by the utility,which causes the prices to deviate from the initial pattern....In the Smart Grid(SG)residential environment,consumers change their power consumption routine according to the price and incentives announced by the utility,which causes the prices to deviate from the initial pattern.Thereby,electricity demand and price forecasting play a significant role and can help in terms of reliability and sustainability.Due to the massive amount of data,big data analytics for forecasting becomes a hot topic in the SG domain.In this paper,the changing and non-linearity of consumer consumption pattern complex data is taken as input.To minimize the computational cost and complexity of the data,the average of the feature engineering approaches includes:Recursive Feature Eliminator(RFE),Extreme Gradient Boosting(XGboost),Random Forest(RF),and are upgraded to extract the most relevant and significant features.To this end,we have proposed the DensetNet-121 network and Support Vector Machine(SVM)ensemble with Aquila Optimizer(AO)to ensure adaptability and handle the complexity of data in the classification.Further,the AO method helps to tune the parameters of DensNet(121 layers)and SVM,which achieves less training loss,computational time,minimized overfitting problems and more training/test accuracy.Performance evaluation metrics and statistical analysis validate the proposed model results are better than the benchmark schemes.Our proposed method has achieved a minimal value of the Mean Average Percentage Error(MAPE)rate i.e.,8%by DenseNet-AO and 6%by SVM-AO and the maximum accurateness rate of 92%and 95%,respectively.展开更多
A revised support vector regression (SVR) ensemble model based on boosting algorithm (SVR-Boosting) is presented in this paper for electricity price forecasting in electric power market. In the light of characteristic...A revised support vector regression (SVR) ensemble model based on boosting algorithm (SVR-Boosting) is presented in this paper for electricity price forecasting in electric power market. In the light of characteristics of electricity price sequence, a new triangular-shaped 为oss function is constructed in the training of the forecasting model to inhibit the learning from abnormal data in electricity price sequence. The results from actual data indicate that, compared with the single support vector regression model, the proposed SVR-Boosting ensemble model is able to enhance the stability of the model output remarkably, acquire higher predicting accuracy, and possess comparatively satisfactory generalization capability.展开更多
Electricity price forecasting is a subset of energy and power forecasting that focuses on projecting commercial electricity market present and future prices.Electricity price forecasting have been a critical input to ...Electricity price forecasting is a subset of energy and power forecasting that focuses on projecting commercial electricity market present and future prices.Electricity price forecasting have been a critical input to energy corporations’strategic decision-making systems over the last 15 years.Many strategies have been utilized for price forecasting in the past,however Artificial Intelligence Techniques(Fuzzy Logic and ANN)have proven to be more efficient than traditional techniques(Regression and Time Series).Fuzzy logic is an approach that uses membership functions(MF)and fuzzy inference model to forecast future electricity prices.Fuzzy c-means(FCM)is one of the popular clustering approach for generating fuzzy membership functions.However,the fuzzy c-means algorithm is limited to producing only one type of MFs,Gaussian MF.The generation of various fuzzy membership functions is critical since it allows for more efficient and optimal problem solutions.As a result,for the best and most improved results for electricity price forecasting,an approach to generate multiple type-1 fuzzy MFs using FCM algorithm is required.Therefore,the objective of this paper is to propose an approach for generating type-1 fuzzy triangular and trapezoidal MFs using FCM algorithm to overcome the limitations of the FCM algorithm.The approach is used to compute and improve forecasting accuracy for electricity prices,where Australian Energy Market Operator(AEMO)data is used.The results show that the proposed approach of using FCM to generate type-1 fuzzy MFs is effective and can be adopted.展开更多
In order to effectively avoid the defects of a traditional discounted cash flow method, a trinomial tree pricing model of the real option is improved and used to forecast the investment price of mining. Taking Molybde...In order to effectively avoid the defects of a traditional discounted cash flow method, a trinomial tree pricing model of the real option is improved and used to forecast the investment price of mining. Taking Molybdenum ore as an example, a theoretical model for the hurdle price under the optimal investment timing is constructed. Based on the example data, the op- tion price model is simulated. By the model, mine investment price can be computed and forecast effectively. According to the characteristics of mine investment, cut-off grade, reserve estimation and mine life in different price also can be quantified. The result shows that it is reliable and practical to enhance the accuracy for mining investment decision.展开更多
Sea buckthorn market floated uncertainly within a narrow range. The market situation provided upward pressure on prices, and producer and consumer interest were poor, coupled with weak prices in the regional markets. ...Sea buckthorn market floated uncertainly within a narrow range. The market situation provided upward pressure on prices, and producer and consumer interest were poor, coupled with weak prices in the regional markets. The objectives of the study are: 1) to estimate the relationship between wild Sea buckthorn (SB) price and Supply, Demand, while some other factors of crude oil price and exchange rate by using simultaneous Supply-Demand and Price system equation and Vector Error Correction Method (VECM);2) to forecast the short-term and long-term SB price;3) to compare and evaluate the price forecasting models. Firstly, the data was analyzed by Ferris and Engle-Granger’s procedure;secondly, both price forecasting methodologies were tested by Pindyck-Rubinfeld and Makridakis’s procedure. The result shows that the VECM model is more efficient using yearly data;a short-term price forecast decreases, and a long-term price forecast is predicted to increase the Mongolian Sea buckthorn market.展开更多
This study maps the academic literature on Stock Price Forecasting with Long-Term Memory Artificial Neural Networks—RNA LSTM. The objective is to know if it is suitable for time series studies, especially for stock p...This study maps the academic literature on Stock Price Forecasting with Long-Term Memory Artificial Neural Networks—RNA LSTM. The objective is to know if it is suitable for time series studies, especially for stock price projection. Through bibliometric analysis and systematic literature review, it is observed that 333 authors wrote on the topic between 2018 and March 2022, and the journals Expert Systems with Applications, IEEE Access, Big Data Journal and Neural Computing and Applications, published the most relevant articles. Of the 99 articles published in this period, 43 are associated with Chinese institutions, the most cited being that of Kim and Won, who studies the volatility of returns and the market capitalization of South Korean stocks. The basis of 65% of the studies is the comparison between the RNN LSTM and other artificial neural networks. The daily closing price of shares is the most analyzed type of data, and the American (21%) and Chinese (20%) stock exchanges are the most studied. 57% of the studies include improvements to existing neural network models and 42% new projection models.展开更多
In the field of computer research,the increase of data in result of societal progress has been remarkable,and the management of this data and the analysis of linked businesses have grown in popularity.There are numero...In the field of computer research,the increase of data in result of societal progress has been remarkable,and the management of this data and the analysis of linked businesses have grown in popularity.There are numerous practical uses for the capability to extract key characteristics from secondary property data and utilize these characteristics to forecast home prices.Using regression methods in machine learning to segment the data set,examine the major factors affecting it,and forecast home prices is the most popular method for examining pricing information.It is challenging to generate precise forecasts since many of the regression models currently being utilized in research are unable to efficiently collect data on the distinctive elements that correlate y with a high degree of house price movement.In today’s forecasting studies,ensemble learning is a very prevalent and well-liked study methodology.The regression integration computation of large housing datasets can use a lot of computer resources as well as computation time,and ensemble learning uses more resources and calls for more machine support in integrating diverse models.The Average Model suggested in this paper uses the concept of fusion to produce integrated analysis findings from several models,combining the best benefits of separate models.The Average Model has a strong applicability in the field of regression prediction and significantly increases computational efficiency.The technique is also easier to replicate and very effective in regression investigations.Before using regression processing techniques,this work creates an average of different regression models using the AM(Average Model)algorithm in a novel way.By evaluating essential models with 90%accuracy,this technique significantly increases the accuracy of house price predictions.The experimental results show that the AM algorithm proposed in this paper has lower prediction error than other comparison algorithms,and the prediction accuracy is greatly improved compared with other algorithms,and has a good experimental effect in house price prediction.展开更多
Electricity price is of the first consideration for all the participants in electric power market and its characteristics are related to both market mechanism and variation in the behaviors of market participants. It ...Electricity price is of the first consideration for all the participants in electric power market and its characteristics are related to both market mechanism and variation in the behaviors of market participants. It is necessary to build a real-time price forecasting model with adaptive capability; and because there are outliers in the price data, they should be detected and filtrated in training the forecasting model by regression method. In view of these points, mis paper presents an electricity price forecasting method based on accurate on-line support vector regression (AOSVR) and outlier detection. Numerical testing results show that the method is effective in forecasting the electricity prices in electric power market展开更多
Based on current supply anddemand projections, ICAC has re-duced the forecast of the season-average Cotlook A Index in 2008/09from 68 U.S. cents per pound
A combined model based on principal components analysis (PCA) and generalized regression neural network (GRNN) was adopted to forecast electricity price in day-ahead electricity market. PCA was applied to mine the mai...A combined model based on principal components analysis (PCA) and generalized regression neural network (GRNN) was adopted to forecast electricity price in day-ahead electricity market. PCA was applied to mine the main influence on day-ahead price, avoiding the strong correlation between the input factors that might influence electricity price, such as the load of the forecasting hour, other history loads and prices, weather and temperature; then GRNN was employed to forecast electricity price according to the main information extracted by PCA. To prove the efficiency of the combined model, a case from PJM (Pennsylvania-New Jersey-Maryland) day-ahead electricity market was evaluated. Compared to back-propagation (BP) neural network and standard GRNN, the combined method reduces the mean absolute percentage error about 3%.展开更多
Electricity price forecasting has become an important aspect of promoting competition and safeguarding the interests of participants in electricity market. As market participants, both producers and consumers intent t...Electricity price forecasting has become an important aspect of promoting competition and safeguarding the interests of participants in electricity market. As market participants, both producers and consumers intent to contribute more efforts on developing appropriate price forecasting scheme to maximize their profits. This paper introduces a time series method developed by Box-Jenkins that applies autoregressive integrated moving average (ARIMA) model to address a best-fitted time-domain model based on a time series of historical price data. Using the model’s parameters determined from the stationarized time series of prices, the price forecasts in UK electricity market for 1 step ahead are estimated in the next day and the next week. The most suitable models are selected for them separately after comparing their prediction outcomes. The data of historical prices are obtained from UK three-month Reference Price Data from April 1st to July7th 2010.展开更多
This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-tu...This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-ture of electricity prices on the time domain by clustering the input data into time ranges where the variation trends are maintained. Due to the imprecise nature of cluster boundaries a fuzzy inference technique is em-ployed to handle data that lies at the intersections. As a necessary step in forecasting prices the anticipated electricity demand at the target time is estimated first using a separate ANN. The Australian New-South Wales electricity market data was used to test the system. The developed system shows considerable im-provement in performance compared with approaches that regard price data as a single continuous time se-ries, achieving MAPE of less than 2% for hours with steady prices and 8% for the clusters covering time pe-riods with price spikes.展开更多
In deregulated electricity markets, price forecasting is gaining importance between various market players in the power in order to adjust their bids in the day-ahead electricity markets and maximize their profits. El...In deregulated electricity markets, price forecasting is gaining importance between various market players in the power in order to adjust their bids in the day-ahead electricity markets and maximize their profits. Electricity price is volatile but non random in nature making it possible to identify the patterns based on the historical data and forecast. An accurate price forecasting method is an important factor for the market players as it enables them to decide their bidding strategy to maximize profits. Various models have been developed over a period of time which can be broadly classified into two types of models that are mainly used for Electricity Price forecasting are: 1) Time series models;and 2) Simulation based models;time series models are widely used among the two, for day ahead forecasting. The presented work summarizes the influencing factors that affect the price behavior and various established forecasting models based on time series analysis, such as Linear regression based models, nonlinear heuristics based models and other simulation based models.展开更多
Electricity prices have complex features,such as high frequency,multiple seasonality,and nonlinearity.These factors will make the prediction of electricity prices difficult.However,accurate electricity price predictio...Electricity prices have complex features,such as high frequency,multiple seasonality,and nonlinearity.These factors will make the prediction of electricity prices difficult.However,accurate electricity price prediction is important for energy producers and consumers to develop bidding strategies.To improve the accuracy of prediction by using each algorithms’advantages,this paper proposes a hybrid model that uses the Empirical Mode Decomposition(EMD),Autoregressive Integrated Moving Average(ARIMA),and Temporal Convolutional Network(TCN).EMD is used to decompose the electricity prices into low and high frequency components.Low frequency components are forecasted by the ARIMA model and the high frequency series are predicted by the TCN model.Experimental results using the realistic electricity price data from Pennsylvania-New Jersey-Maryland(PJM)electricity markets show that the proposed method has a higher prediction accuracy than other single methods and hybrid methods.展开更多
In power market, electricity price forecasting provides significant information which can help the electricity market participants to prepare corresponding bidding strategies to maximize their profits. This paper intr...In power market, electricity price forecasting provides significant information which can help the electricity market participants to prepare corresponding bidding strategies to maximize their profits. This paper introduces the models of autoregressive integrated moving average (ARIMA) and artificial neural network (ANN) which are applied to the price forecasts for up to 3 steps 8 weeks ahead in the UK electricity market. The half hourly data of historical prices are obtained from UK Reference Price Data from March 22nd to July 14th 2010 and the predictions are derived from a sliding training window with a length of 8 weeks. The ARIMA with various AR and MA orders and the ANN with different numbers of delays and neurons have been established and compared in terms of the root mean square errors (RMSEs) of price forecasts. The experimental results illustrate that the ARIMA (4,1,2) model gives greater improvement over persistence than the ANN (20 neurons, 4 delays) model.展开更多
Stock market is volatile and predicting stock prices is a challenging task.Stock prices are influenced by multiple factors,and prediction using only numerical or image features is ineffective.To solve this problem,we ...Stock market is volatile and predicting stock prices is a challenging task.Stock prices are influenced by multiple factors,and prediction using only numerical or image features is ineffective.To solve this problem,we propose a Hybrid Channel Stock model that incorporates multiple features of basic stock data,K-line charts and technical indicator factors for predicting the closing price of a stock on day n+1.The model combines multiple aspects of data and uses a multi-channel structure including improved CNN-TW,bidirectional LSTM and Transformer network.First,we construct the multi-channel branches of the multi-faceted feature fusion input network model;second,in this paper,we will use the concatenate method to stitch the output of each branch as the input of the rest of the network;the last layer in the network is the fully connected layer,which combines the linear activation function regression to output the predicted prices.Finally,we conducted extensive experiments on the Dow 30,SSH 50 and CSI100 indices.The experimental results show that the Hybrid Channel Stock method has the best performance with the smallest MSE,RMSE,MAE and MAPE compared with existing models.in addition,the experiments on different trading days validate the stability and effectiveness of the model,providing an important reference for investors to make stock investment decisions.展开更多
In the electricity market environment,electricity price forecasting plays an essential role in the decision-making process of a power generation company,especially in developing the optimal bidding strategy for maximi...In the electricity market environment,electricity price forecasting plays an essential role in the decision-making process of a power generation company,especially in developing the optimal bidding strategy for maximizing revenues.Hence,it is necessary for a power generation company to develop an accurate electricity price forecasting algorithm.Given this background,this paper proposes a two-step day-ahead electricity price forecasting algorithm based on the weighted Knearest neighborhood(WKNN)method and the Gaussian process regression(GPR)approach.In the first step,several predictors,i.e.,operation indicators,are presented and the WKNN method is employed to detect the day-ahead price spike based on these indicators.In the second step,the outputs of the first step are regarded as a new predictor,and it is utilized together with the operation indicators to accurately forecast the electricity price based on the GPR approach.The proposed algorithm is verified by actual market data in Pennsylvania-New JerseyMaryland Interconnection(PJM),and comparisons between this algorithm and existing ones are also made to demonstrate the effectiveness of the proposed algorithm.Simulation results show that the proposed algorithm can attain accurate price forecasting results even with several price spikes in historical electricity price data.展开更多
Advanced machine learning(ML)algorithms have outperformed traditional approaches in various forecasting applications,especially electricity price forecasting(EPF).However,the prediction accuracy of ML reduces substant...Advanced machine learning(ML)algorithms have outperformed traditional approaches in various forecasting applications,especially electricity price forecasting(EPF).However,the prediction accuracy of ML reduces substantially if the input data is not similar to the ones seen by the model during training.This is often observed in EPF problems when market dynamics change owing to a rise in fuel prices,an increase in renewable penetration,a change in operational policies,etc.While the dip in model accuracy for unseen data is a cause for concern,what is more,challenging is not knowing when the ML model would respond in such a manner.Such uncertainty makes the power market participants,like bidding agents and retailers,vulnerable to substantial financial loss caused by the prediction errors of EPF models.Therefore,it becomes essential to identify whether or not the model prediction at a given instance is trustworthy.In this light,this paper proposes a trust algorithm for EPF users based on explainable artificial intelligence techniques.The suggested algorithm generates trust scores that reflect the model’s prediction quality for each new input.These scores are formulated in two stages:in the first stage,the coarse version of the score is formed using correlations of local and global explanations,and in the second stage,the score is fine-tuned further by the Shapley additive explanations values of different features.Such score-based explanations are more straightforward than feature-based visual explanations for EPF users like asset managers and traders.A dataset from Italy’s and ERCOT’s electricity market validates the efficacy of the proposed algorithm.Results show that the algorithm has more than 85%accuracy in identifying good predictions when the data distribution is similar to the training dataset.In the case of distribution shift,the algorithm shows the same accuracy level in identifying bad predictions.展开更多
文摘Accurate carbon price forecasting is essential to provide the guidance for production and investment.Current research is mainly dependent on plenty of historical samples of carbon prices,which is impractical for the newly launched carbon market due to its short history.Based on the idea of transfer learning,this paper proposes a novel price forecasting model,which utilizes the correlation between the new and mature markets.The model is firstly pretrained on large data of mature market by gated recurrent unit algorithm,and then fine-tuned by the target market samples.An integral framework,including complexity decomposition method for data pre-processing,sample entropy for feature selection,and support vector regression for result post-processing,is provided.In the empirical analysis of new Chinese market,the root mean square error,mean absolute error,mean absolute percentage error,and determination coefficient of the model are 0.529,0.476,0.717%and 0.501 respectively,proving its validity.
文摘Garlic prices fluctuate dramatically in recent years and it is very difficult to predict garlic prices.The autoregressive integrated moving average(ARIMA)model is currently the most important method for predicting garlic prices.However,the ARIMA model can only predict the linear part of the garlic prices,and cannot predict its nonlinear part.Therefore,it is urgent to adopt a method to analyze the nonlinear characteristics of garlic prices.After comparing the advantages and disadvantages of several major prediction models which used to forecast nonlinear time series,using support vector machine(SVM)model to predict the nonlinear part of garlic prices and establish ARIMA-SVM hybrid forecast model to predict garlic prices.The monthly average price data of garlic in 2010-2017 was used to test the effect of ARIMA model,SVM model and ARIMA-SVM model.The experimental results show that:(1)Garlic price is affected by many factors but the most is the supply and demand relationship;(2)The SVM model has a good effect in dealing with the nonlinear relationship of garlic prices;(3)The ARIMA-SVM hybrid model is better than the single ARIMA model and SVM model on the accuracy of garlic price prediction,it can be used as an effective method to predict the short-term price of garlic.
基金The authors acknowledge the support from the Ministry of Education and the Deanship of Scientific Research,Najran University,Saudi Arabia,under code number NU/-/SERC/10/616.
文摘In the Smart Grid(SG)residential environment,consumers change their power consumption routine according to the price and incentives announced by the utility,which causes the prices to deviate from the initial pattern.Thereby,electricity demand and price forecasting play a significant role and can help in terms of reliability and sustainability.Due to the massive amount of data,big data analytics for forecasting becomes a hot topic in the SG domain.In this paper,the changing and non-linearity of consumer consumption pattern complex data is taken as input.To minimize the computational cost and complexity of the data,the average of the feature engineering approaches includes:Recursive Feature Eliminator(RFE),Extreme Gradient Boosting(XGboost),Random Forest(RF),and are upgraded to extract the most relevant and significant features.To this end,we have proposed the DensetNet-121 network and Support Vector Machine(SVM)ensemble with Aquila Optimizer(AO)to ensure adaptability and handle the complexity of data in the classification.Further,the AO method helps to tune the parameters of DensNet(121 layers)and SVM,which achieves less training loss,computational time,minimized overfitting problems and more training/test accuracy.Performance evaluation metrics and statistical analysis validate the proposed model results are better than the benchmark schemes.Our proposed method has achieved a minimal value of the Mean Average Percentage Error(MAPE)rate i.e.,8%by DenseNet-AO and 6%by SVM-AO and the maximum accurateness rate of 92%and 95%,respectively.
基金Sponsored by the National Outstanding Young Investigator Grant (Grant No6970025)the Key Project of National Natural Science Foundation (GrantNo59937150)+2 种基金863 High Tech Development Plan (Grant No2001AA413910)of China and the Key Project of National Natural Science Foundation(Grant No59937150)the Project of National Natural Science Foundation (Grant No60274054)
文摘A revised support vector regression (SVR) ensemble model based on boosting algorithm (SVR-Boosting) is presented in this paper for electricity price forecasting in electric power market. In the light of characteristics of electricity price sequence, a new triangular-shaped 为oss function is constructed in the training of the forecasting model to inhibit the learning from abnormal data in electricity price sequence. The results from actual data indicate that, compared with the single support vector regression model, the proposed SVR-Boosting ensemble model is able to enhance the stability of the model output remarkably, acquire higher predicting accuracy, and possess comparatively satisfactory generalization capability.
基金This research is an ongoing research supported by Yayasan UTP Grant(015LC0-321&015LC0-311)Fundamental Research Grant Scheme(FRGS/1/2018/ICT02/UTP/02/1)a grant funded by the Ministry of Higher Education,Malaysia.
文摘Electricity price forecasting is a subset of energy and power forecasting that focuses on projecting commercial electricity market present and future prices.Electricity price forecasting have been a critical input to energy corporations’strategic decision-making systems over the last 15 years.Many strategies have been utilized for price forecasting in the past,however Artificial Intelligence Techniques(Fuzzy Logic and ANN)have proven to be more efficient than traditional techniques(Regression and Time Series).Fuzzy logic is an approach that uses membership functions(MF)and fuzzy inference model to forecast future electricity prices.Fuzzy c-means(FCM)is one of the popular clustering approach for generating fuzzy membership functions.However,the fuzzy c-means algorithm is limited to producing only one type of MFs,Gaussian MF.The generation of various fuzzy membership functions is critical since it allows for more efficient and optimal problem solutions.As a result,for the best and most improved results for electricity price forecasting,an approach to generate multiple type-1 fuzzy MFs using FCM algorithm is required.Therefore,the objective of this paper is to propose an approach for generating type-1 fuzzy triangular and trapezoidal MFs using FCM algorithm to overcome the limitations of the FCM algorithm.The approach is used to compute and improve forecasting accuracy for electricity prices,where Australian Energy Market Operator(AEMO)data is used.The results show that the proposed approach of using FCM to generate type-1 fuzzy MFs is effective and can be adopted.
文摘In order to effectively avoid the defects of a traditional discounted cash flow method, a trinomial tree pricing model of the real option is improved and used to forecast the investment price of mining. Taking Molybdenum ore as an example, a theoretical model for the hurdle price under the optimal investment timing is constructed. Based on the example data, the op- tion price model is simulated. By the model, mine investment price can be computed and forecast effectively. According to the characteristics of mine investment, cut-off grade, reserve estimation and mine life in different price also can be quantified. The result shows that it is reliable and practical to enhance the accuracy for mining investment decision.
文摘Sea buckthorn market floated uncertainly within a narrow range. The market situation provided upward pressure on prices, and producer and consumer interest were poor, coupled with weak prices in the regional markets. The objectives of the study are: 1) to estimate the relationship between wild Sea buckthorn (SB) price and Supply, Demand, while some other factors of crude oil price and exchange rate by using simultaneous Supply-Demand and Price system equation and Vector Error Correction Method (VECM);2) to forecast the short-term and long-term SB price;3) to compare and evaluate the price forecasting models. Firstly, the data was analyzed by Ferris and Engle-Granger’s procedure;secondly, both price forecasting methodologies were tested by Pindyck-Rubinfeld and Makridakis’s procedure. The result shows that the VECM model is more efficient using yearly data;a short-term price forecast decreases, and a long-term price forecast is predicted to increase the Mongolian Sea buckthorn market.
文摘This study maps the academic literature on Stock Price Forecasting with Long-Term Memory Artificial Neural Networks—RNA LSTM. The objective is to know if it is suitable for time series studies, especially for stock price projection. Through bibliometric analysis and systematic literature review, it is observed that 333 authors wrote on the topic between 2018 and March 2022, and the journals Expert Systems with Applications, IEEE Access, Big Data Journal and Neural Computing and Applications, published the most relevant articles. Of the 99 articles published in this period, 43 are associated with Chinese institutions, the most cited being that of Kim and Won, who studies the volatility of returns and the market capitalization of South Korean stocks. The basis of 65% of the studies is the comparison between the RNN LSTM and other artificial neural networks. The daily closing price of shares is the most analyzed type of data, and the American (21%) and Chinese (20%) stock exchanges are the most studied. 57% of the studies include improvements to existing neural network models and 42% new projection models.
基金This work was supported in part by Sichuan Science and Technology Program(Grant No.2022YFG0174)in part by the Sichuan Gas Turbine Research Institute stability support project of China Aero Engine Group Co.,Ltd(Grant No.GJCZ-0034-19)。
文摘In the field of computer research,the increase of data in result of societal progress has been remarkable,and the management of this data and the analysis of linked businesses have grown in popularity.There are numerous practical uses for the capability to extract key characteristics from secondary property data and utilize these characteristics to forecast home prices.Using regression methods in machine learning to segment the data set,examine the major factors affecting it,and forecast home prices is the most popular method for examining pricing information.It is challenging to generate precise forecasts since many of the regression models currently being utilized in research are unable to efficiently collect data on the distinctive elements that correlate y with a high degree of house price movement.In today’s forecasting studies,ensemble learning is a very prevalent and well-liked study methodology.The regression integration computation of large housing datasets can use a lot of computer resources as well as computation time,and ensemble learning uses more resources and calls for more machine support in integrating diverse models.The Average Model suggested in this paper uses the concept of fusion to produce integrated analysis findings from several models,combining the best benefits of separate models.The Average Model has a strong applicability in the field of regression prediction and significantly increases computational efficiency.The technique is also easier to replicate and very effective in regression investigations.Before using regression processing techniques,this work creates an average of different regression models using the AM(Average Model)algorithm in a novel way.By evaluating essential models with 90%accuracy,this technique significantly increases the accuracy of house price predictions.The experimental results show that the AM algorithm proposed in this paper has lower prediction error than other comparison algorithms,and the prediction accuracy is greatly improved compared with other algorithms,and has a good experimental effect in house price prediction.
基金This paper is about a project financed by the National Outstanding Young Investigator Grant (6970025)863 High Tech Development Plan of China (2001AA413910) the Project of National Natural Science Foundation (60274054) the Key Project of National Natural Science Foundation (59937150)it is also supported by its cooperating project financed by 863 High Tech Development Plan of China (2004AA412050).
文摘Electricity price is of the first consideration for all the participants in electric power market and its characteristics are related to both market mechanism and variation in the behaviors of market participants. It is necessary to build a real-time price forecasting model with adaptive capability; and because there are outliers in the price data, they should be detected and filtrated in training the forecasting model by regression method. In view of these points, mis paper presents an electricity price forecasting method based on accurate on-line support vector regression (AOSVR) and outlier detection. Numerical testing results show that the method is effective in forecasting the electricity prices in electric power market
文摘Based on current supply anddemand projections, ICAC has re-duced the forecast of the season-average Cotlook A Index in 2008/09from 68 U.S. cents per pound
基金Project(70671039) supported by the National Natural Science Foundation of China
文摘A combined model based on principal components analysis (PCA) and generalized regression neural network (GRNN) was adopted to forecast electricity price in day-ahead electricity market. PCA was applied to mine the main influence on day-ahead price, avoiding the strong correlation between the input factors that might influence electricity price, such as the load of the forecasting hour, other history loads and prices, weather and temperature; then GRNN was employed to forecast electricity price according to the main information extracted by PCA. To prove the efficiency of the combined model, a case from PJM (Pennsylvania-New Jersey-Maryland) day-ahead electricity market was evaluated. Compared to back-propagation (BP) neural network and standard GRNN, the combined method reduces the mean absolute percentage error about 3%.
文摘Electricity price forecasting has become an important aspect of promoting competition and safeguarding the interests of participants in electricity market. As market participants, both producers and consumers intent to contribute more efforts on developing appropriate price forecasting scheme to maximize their profits. This paper introduces a time series method developed by Box-Jenkins that applies autoregressive integrated moving average (ARIMA) model to address a best-fitted time-domain model based on a time series of historical price data. Using the model’s parameters determined from the stationarized time series of prices, the price forecasts in UK electricity market for 1 step ahead are estimated in the next day and the next week. The most suitable models are selected for them separately after comparing their prediction outcomes. The data of historical prices are obtained from UK three-month Reference Price Data from April 1st to July7th 2010.
文摘This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-ture of electricity prices on the time domain by clustering the input data into time ranges where the variation trends are maintained. Due to the imprecise nature of cluster boundaries a fuzzy inference technique is em-ployed to handle data that lies at the intersections. As a necessary step in forecasting prices the anticipated electricity demand at the target time is estimated first using a separate ANN. The Australian New-South Wales electricity market data was used to test the system. The developed system shows considerable im-provement in performance compared with approaches that regard price data as a single continuous time se-ries, achieving MAPE of less than 2% for hours with steady prices and 8% for the clusters covering time pe-riods with price spikes.
文摘In deregulated electricity markets, price forecasting is gaining importance between various market players in the power in order to adjust their bids in the day-ahead electricity markets and maximize their profits. Electricity price is volatile but non random in nature making it possible to identify the patterns based on the historical data and forecast. An accurate price forecasting method is an important factor for the market players as it enables them to decide their bidding strategy to maximize profits. Various models have been developed over a period of time which can be broadly classified into two types of models that are mainly used for Electricity Price forecasting are: 1) Time series models;and 2) Simulation based models;time series models are widely used among the two, for day ahead forecasting. The presented work summarizes the influencing factors that affect the price behavior and various established forecasting models based on time series analysis, such as Linear regression based models, nonlinear heuristics based models and other simulation based models.
基金supported by the Sichuan Science and Technology Program under Grant 2020JDJQ0037 and 2020YFG0312.
文摘Electricity prices have complex features,such as high frequency,multiple seasonality,and nonlinearity.These factors will make the prediction of electricity prices difficult.However,accurate electricity price prediction is important for energy producers and consumers to develop bidding strategies.To improve the accuracy of prediction by using each algorithms’advantages,this paper proposes a hybrid model that uses the Empirical Mode Decomposition(EMD),Autoregressive Integrated Moving Average(ARIMA),and Temporal Convolutional Network(TCN).EMD is used to decompose the electricity prices into low and high frequency components.Low frequency components are forecasted by the ARIMA model and the high frequency series are predicted by the TCN model.Experimental results using the realistic electricity price data from Pennsylvania-New Jersey-Maryland(PJM)electricity markets show that the proposed method has a higher prediction accuracy than other single methods and hybrid methods.
文摘In power market, electricity price forecasting provides significant information which can help the electricity market participants to prepare corresponding bidding strategies to maximize their profits. This paper introduces the models of autoregressive integrated moving average (ARIMA) and artificial neural network (ANN) which are applied to the price forecasts for up to 3 steps 8 weeks ahead in the UK electricity market. The half hourly data of historical prices are obtained from UK Reference Price Data from March 22nd to July 14th 2010 and the predictions are derived from a sliding training window with a length of 8 weeks. The ARIMA with various AR and MA orders and the ANN with different numbers of delays and neurons have been established and compared in terms of the root mean square errors (RMSEs) of price forecasts. The experimental results illustrate that the ARIMA (4,1,2) model gives greater improvement over persistence than the ANN (20 neurons, 4 delays) model.
基金supported by these three foundation programs:the Science and Technology Research Project(Youth)of Chongqing Municipal Education Commission(KJQN202201142)the Chongqing Research Program of Basic Research Frontier Technology(CSTB2022BSXM-JCX0069CCCC)the Training Program of the National Natural Science Foundation of China and National Social Science Fund of China of Chongqing University of Technology(2022PYZ030)。
文摘Stock market is volatile and predicting stock prices is a challenging task.Stock prices are influenced by multiple factors,and prediction using only numerical or image features is ineffective.To solve this problem,we propose a Hybrid Channel Stock model that incorporates multiple features of basic stock data,K-line charts and technical indicator factors for predicting the closing price of a stock on day n+1.The model combines multiple aspects of data and uses a multi-channel structure including improved CNN-TW,bidirectional LSTM and Transformer network.First,we construct the multi-channel branches of the multi-faceted feature fusion input network model;second,in this paper,we will use the concatenate method to stitch the output of each branch as the input of the rest of the network;the last layer in the network is the fully connected layer,which combines the linear activation function regression to output the predicted prices.Finally,we conducted extensive experiments on the Dow 30,SSH 50 and CSI100 indices.The experimental results show that the Hybrid Channel Stock method has the best performance with the smallest MSE,RMSE,MAE and MAPE compared with existing models.in addition,the experiments on different trading days validate the stability and effectiveness of the model,providing an important reference for investors to make stock investment decisions.
基金supported by National Natural Science Foundation of China (No.52077195)Zhejiang University Academic Award for Outstanding Doctoral Candidates (No.202022)。
文摘In the electricity market environment,electricity price forecasting plays an essential role in the decision-making process of a power generation company,especially in developing the optimal bidding strategy for maximizing revenues.Hence,it is necessary for a power generation company to develop an accurate electricity price forecasting algorithm.Given this background,this paper proposes a two-step day-ahead electricity price forecasting algorithm based on the weighted Knearest neighborhood(WKNN)method and the Gaussian process regression(GPR)approach.In the first step,several predictors,i.e.,operation indicators,are presented and the WKNN method is employed to detect the day-ahead price spike based on these indicators.In the second step,the outputs of the first step are regarded as a new predictor,and it is utilized together with the operation indicators to accurately forecast the electricity price based on the GPR approach.The proposed algorithm is verified by actual market data in Pennsylvania-New JerseyMaryland Interconnection(PJM),and comparisons between this algorithm and existing ones are also made to demonstrate the effectiveness of the proposed algorithm.Simulation results show that the proposed algorithm can attain accurate price forecasting results even with several price spikes in historical electricity price data.
文摘Advanced machine learning(ML)algorithms have outperformed traditional approaches in various forecasting applications,especially electricity price forecasting(EPF).However,the prediction accuracy of ML reduces substantially if the input data is not similar to the ones seen by the model during training.This is often observed in EPF problems when market dynamics change owing to a rise in fuel prices,an increase in renewable penetration,a change in operational policies,etc.While the dip in model accuracy for unseen data is a cause for concern,what is more,challenging is not knowing when the ML model would respond in such a manner.Such uncertainty makes the power market participants,like bidding agents and retailers,vulnerable to substantial financial loss caused by the prediction errors of EPF models.Therefore,it becomes essential to identify whether or not the model prediction at a given instance is trustworthy.In this light,this paper proposes a trust algorithm for EPF users based on explainable artificial intelligence techniques.The suggested algorithm generates trust scores that reflect the model’s prediction quality for each new input.These scores are formulated in two stages:in the first stage,the coarse version of the score is formed using correlations of local and global explanations,and in the second stage,the score is fine-tuned further by the Shapley additive explanations values of different features.Such score-based explanations are more straightforward than feature-based visual explanations for EPF users like asset managers and traders.A dataset from Italy’s and ERCOT’s electricity market validates the efficacy of the proposed algorithm.Results show that the algorithm has more than 85%accuracy in identifying good predictions when the data distribution is similar to the training dataset.In the case of distribution shift,the algorithm shows the same accuracy level in identifying bad predictions.