Rubber producers,consumers,traders,and those who are involved in the rubber industry face major risks of rubber price fluctuations.As a result,decision-makers are required to make an accurate estimation of the price o...Rubber producers,consumers,traders,and those who are involved in the rubber industry face major risks of rubber price fluctuations.As a result,decision-makers are required to make an accurate estimation of the price of rubber.This paper aims to propose hybrid intelligent models,which can be utilized to forecast the price of rubber in Malaysia by employing monthly Malaysia’s rubber pricing data,spanning from January 2016 to March 2021.The projected hybrid model consists of different algorithms with the symbolic Radial Basis Functions Neural Network k-Satisfiability Logic Mining(RBFNN-kSAT).These algorithms,including Grey Wolf Optimization Algorithm,Artificial Bee Colony Algorithm,and Particle Swarm Optimization Algorithm were utilized in the forecasting data analysis.Several factors,which affect the monthly price of rubber,such as rubber production,total exports of rubber,total imports of rubber,stocks of rubber,currency exchange rate,and crude oil prices were also considered in the analysis.To evaluate the results of the introduced model,a comparison has been conducted for each model to identify the most optimum model for forecasting the price of rubber.The findings showed that GWO with RBFNN-kSAT represents the most accurate and efficient model compared with ABC with RBFNNkSAT and PSO with RBFNN-kSAT in forecasting the price of rubber.The GWO with RBFNN-kSAT obtained the greatest average accuracy(92%),with a better correlation coefficient R=0.983871 than ABC with RBFNN-kSAT and PSO with RBFNN-kSAT.Furthermore,the empirical results of this study provided several directions for policymakers to make the right decision in terms of devising proper measures in the industry to address frequent price changes so that the Malaysian rubber industry maintains dominance in the international markets.展开更多
Large-scale electric vehicles(EVs) connected to the micro grid would cause many problems. In this paper, with the consideration of vehicle to grid(V2 G), two charging and discharging load modes of EVs were constructed...Large-scale electric vehicles(EVs) connected to the micro grid would cause many problems. In this paper, with the consideration of vehicle to grid(V2 G), two charging and discharging load modes of EVs were constructed. One was the disorderly charging and discharging mode based on travel habits, and the other was the orderly charging and discharging mode based on time-of-use(TOU) price;Monte Carlo method was used to verify the case. The scheme of the capacity optimization of photovoltaic charging station under two different charging and discharging modes with V2 G was proposed. The mathematical models of the objective function with the maximization of energy efficiency, the minimization of the investment and the operation cost of the charging system were established. The range of decision variables, constraints of the requirements of the power balance and the strategy of energy exchange were given. NSGA-Ⅱ and NSGA-SA algorithm were used to verify the cases, respectively. In both algorithms, by comparing with the simulation results of the two different modes, it shows that the orderly charging and discharging mode with V2 G is obviously better than the disorderly charging and discharging mode in the aspects of alleviating the pressure of power grid, reducing system investment and improving energy efficiency.展开更多
Cars are regarded as an indispensable means of transportation in Taiwan.Several studies have indicated that the automotive industry has witnessed remarkable advances and that the market of used cars has rapidly expand...Cars are regarded as an indispensable means of transportation in Taiwan.Several studies have indicated that the automotive industry has witnessed remarkable advances and that the market of used cars has rapidly expanded.In this study,a price prediction system for used BMW cars was developed.Nine parameters of used cars,including their model,registration year,and transmission style,were analyzed.The data obtained were then divided into three subsets.The first subset was used to compare the results of each algorithm.The predicted values produced by the two algorithms with the most satisfactory results were used as the input of a fully connected neural network.The second subset was used with an optimization algorithm to modify the number of hidden layers in a fully connected neural network and modify the low,medium,and high parameters of the membership function(MF)to achieve model optimization.Finally,the third subset was used for the validation set during the prediction process.These three subsets were divided using k-fold cross-validation to avoid overfitting and selection bias.In conclusion,in this study,a model combining two optimal algorithms(i.e.,random forest and k-nearest neighbors)with several optimization algorithms(i.e.,gray wolf optimizer,multilayer perceptron,and MF)was successfully established.The prediction results obtained indicated a mean square error of 0.0978,a root-mean-square error of 0.3128,a mean absolute error of 0.1903,and a coefficient of determination of 0.9249.展开更多
Traditional optimal operation of hydropower station usually has two problems. One is that the optimal algorithm hasn’t high efficiency, and the other is that the optimal operation model pays little attention to ecolo...Traditional optimal operation of hydropower station usually has two problems. One is that the optimal algorithm hasn’t high efficiency, and the other is that the optimal operation model pays little attention to ecology. And with the development of electric power market, the generated benefit is concerned instead of generated energy. Based on the analysis of time-varying electricity price policy, an optimal operation model of hydropower station reservoir with ecology consideration is established. The model takes the maximum annual power generation benefit, the maximum output of the minimal output stage in the year and the minimum shortage of eco-environment demand as the objectives, and reservoir water quantity balance, reservoir storage capacity, reservoir discharge flow and hydropower station output and nonnegative variable as the constraints. To solve the optimal model, a chaotic optimization genetic algorithm which combines the ergodicity of chaos and the inversion property of genetic algorithm is exploited. An example is given, which shows that the proposed model and algorithm are scientific and feasible to deal with the optimal operation of hydropower station.展开更多
针对客户有价格策略型行为下的供应商库存路径与定价问题(inventory routing and pricing problem,IRPP),通过将参考价格效应嵌入产品需求价格函数中,以供应商总利润最大化为目标,构建考虑参考价格效应的IRPP优化模型,设计改进的粒子群...针对客户有价格策略型行为下的供应商库存路径与定价问题(inventory routing and pricing problem,IRPP),通过将参考价格效应嵌入产品需求价格函数中,以供应商总利润最大化为目标,构建考虑参考价格效应的IRPP优化模型,设计改进的粒子群算法进行求解。通过3组不同规模的算例验证本文模型与算法的适用性和有效性。计算结果显示,考虑参考价格效应不仅有助于降低产品定价(约9%)和提升客户感知收益,而且能够降低零售商的产品总库存(约22%)、仓储资源占用成本和库存持有成本,从而提高供应商总利润(约5%)。敏感性分析结果显示:受客户记忆参数减小和增益系数增大的共同影响,供应商总利润会明显增加;受客户记忆参数和损失系数增大的共同影响,供应商总利润会迅速下降。研究结论可为电商环境下客户有价格策略型行为下的供应商IRPP优化提供决策支撑。展开更多
基金supported by the Ministry of Higher Education Malaysia (MOHE)through the Fundamental Research Grant Scheme (FRGS),FRGS/1/2022/STG06/USM/02/11 and Universiti Sains Malaysia.
文摘Rubber producers,consumers,traders,and those who are involved in the rubber industry face major risks of rubber price fluctuations.As a result,decision-makers are required to make an accurate estimation of the price of rubber.This paper aims to propose hybrid intelligent models,which can be utilized to forecast the price of rubber in Malaysia by employing monthly Malaysia’s rubber pricing data,spanning from January 2016 to March 2021.The projected hybrid model consists of different algorithms with the symbolic Radial Basis Functions Neural Network k-Satisfiability Logic Mining(RBFNN-kSAT).These algorithms,including Grey Wolf Optimization Algorithm,Artificial Bee Colony Algorithm,and Particle Swarm Optimization Algorithm were utilized in the forecasting data analysis.Several factors,which affect the monthly price of rubber,such as rubber production,total exports of rubber,total imports of rubber,stocks of rubber,currency exchange rate,and crude oil prices were also considered in the analysis.To evaluate the results of the introduced model,a comparison has been conducted for each model to identify the most optimum model for forecasting the price of rubber.The findings showed that GWO with RBFNN-kSAT represents the most accurate and efficient model compared with ABC with RBFNNkSAT and PSO with RBFNN-kSAT in forecasting the price of rubber.The GWO with RBFNN-kSAT obtained the greatest average accuracy(92%),with a better correlation coefficient R=0.983871 than ABC with RBFNN-kSAT and PSO with RBFNN-kSAT.Furthermore,the empirical results of this study provided several directions for policymakers to make the right decision in terms of devising proper measures in the industry to address frequent price changes so that the Malaysian rubber industry maintains dominance in the international markets.
基金Project(3502Z20179026)supported by Xiamen Science and Technology Project,China。
文摘Large-scale electric vehicles(EVs) connected to the micro grid would cause many problems. In this paper, with the consideration of vehicle to grid(V2 G), two charging and discharging load modes of EVs were constructed. One was the disorderly charging and discharging mode based on travel habits, and the other was the orderly charging and discharging mode based on time-of-use(TOU) price;Monte Carlo method was used to verify the case. The scheme of the capacity optimization of photovoltaic charging station under two different charging and discharging modes with V2 G was proposed. The mathematical models of the objective function with the maximization of energy efficiency, the minimization of the investment and the operation cost of the charging system were established. The range of decision variables, constraints of the requirements of the power balance and the strategy of energy exchange were given. NSGA-Ⅱ and NSGA-SA algorithm were used to verify the cases, respectively. In both algorithms, by comparing with the simulation results of the two different modes, it shows that the orderly charging and discharging mode with V2 G is obviously better than the disorderly charging and discharging mode in the aspects of alleviating the pressure of power grid, reducing system investment and improving energy efficiency.
基金This work was supported by the Ministry of Science and Technology,Taiwan,under Grants MOST 111-2218-E-194-007.
文摘Cars are regarded as an indispensable means of transportation in Taiwan.Several studies have indicated that the automotive industry has witnessed remarkable advances and that the market of used cars has rapidly expanded.In this study,a price prediction system for used BMW cars was developed.Nine parameters of used cars,including their model,registration year,and transmission style,were analyzed.The data obtained were then divided into three subsets.The first subset was used to compare the results of each algorithm.The predicted values produced by the two algorithms with the most satisfactory results were used as the input of a fully connected neural network.The second subset was used with an optimization algorithm to modify the number of hidden layers in a fully connected neural network and modify the low,medium,and high parameters of the membership function(MF)to achieve model optimization.Finally,the third subset was used for the validation set during the prediction process.These three subsets were divided using k-fold cross-validation to avoid overfitting and selection bias.In conclusion,in this study,a model combining two optimal algorithms(i.e.,random forest and k-nearest neighbors)with several optimization algorithms(i.e.,gray wolf optimizer,multilayer perceptron,and MF)was successfully established.The prediction results obtained indicated a mean square error of 0.0978,a root-mean-square error of 0.3128,a mean absolute error of 0.1903,and a coefficient of determination of 0.9249.
文摘Traditional optimal operation of hydropower station usually has two problems. One is that the optimal algorithm hasn’t high efficiency, and the other is that the optimal operation model pays little attention to ecology. And with the development of electric power market, the generated benefit is concerned instead of generated energy. Based on the analysis of time-varying electricity price policy, an optimal operation model of hydropower station reservoir with ecology consideration is established. The model takes the maximum annual power generation benefit, the maximum output of the minimal output stage in the year and the minimum shortage of eco-environment demand as the objectives, and reservoir water quantity balance, reservoir storage capacity, reservoir discharge flow and hydropower station output and nonnegative variable as the constraints. To solve the optimal model, a chaotic optimization genetic algorithm which combines the ergodicity of chaos and the inversion property of genetic algorithm is exploited. An example is given, which shows that the proposed model and algorithm are scientific and feasible to deal with the optimal operation of hydropower station.
文摘针对客户有价格策略型行为下的供应商库存路径与定价问题(inventory routing and pricing problem,IRPP),通过将参考价格效应嵌入产品需求价格函数中,以供应商总利润最大化为目标,构建考虑参考价格效应的IRPP优化模型,设计改进的粒子群算法进行求解。通过3组不同规模的算例验证本文模型与算法的适用性和有效性。计算结果显示,考虑参考价格效应不仅有助于降低产品定价(约9%)和提升客户感知收益,而且能够降低零售商的产品总库存(约22%)、仓储资源占用成本和库存持有成本,从而提高供应商总利润(约5%)。敏感性分析结果显示:受客户记忆参数减小和增益系数增大的共同影响,供应商总利润会明显增加;受客户记忆参数和损失系数增大的共同影响,供应商总利润会迅速下降。研究结论可为电商环境下客户有价格策略型行为下的供应商IRPP优化提供决策支撑。