期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Polynomial Convergence of Primal-Dual Path-Following Algorithms for Symmetric Cone Programming Based on Wide Neighborhoods and a New Class of Directions
1
作者 Chang-He Liu Yuan-Yuan Huang You-Lin Shang 《Journal of the Operations Research Society of China》 EI CSCD 2017年第3期333-346,共14页
This paper presents a class of primal-dual path-following interior-point algorithms for symmetric cone programming(SCP)based on wide neighborhoods and new directions with a parameterθ.When the parameterθ=1,the direc... This paper presents a class of primal-dual path-following interior-point algorithms for symmetric cone programming(SCP)based on wide neighborhoods and new directions with a parameterθ.When the parameterθ=1,the direction is exactly the classical Newton direction.When the parameterθis independent of the rank of the associated Euclidean Jordan algebra,the algorithm terminates in at most O(κr logε−1)iterations,which coincides with the best known iteration bound for the classical wide neighborhood algorithms.When the parameterθ=√n/βτand Nesterov–Todd search direction is used,the algorithm has O(√r logε−1)iteration complexity,the best iteration complexity obtained so far by any interior-point method for solving SCP.To our knowledge,this is the first time that a class of interior-point algorithms including the classical wide neighborhood path-following algorithm is proposed and analyzed over symmetric cone. 展开更多
关键词 path-following interior-point algorithm Wide neighborhood Symmetric cone programming Euclidean Jordan algebra Polynomial complexity
原文传递
First-order primal-dual algorithm for sparse-view neutron computed tomography-based three-dimensional image reconstruction 被引量:1
2
作者 Yang Liu Teng-Fei Zhu +1 位作者 Zhi Luo Xiao-Ping Ouyang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第8期35-53,共19页
Neutron computed tomography(NCT)is widely used as a noninvasive measurement technique in nuclear engineering,thermal hydraulics,and cultural heritage.The neutron source intensity of NCT is usually low and the scan tim... Neutron computed tomography(NCT)is widely used as a noninvasive measurement technique in nuclear engineering,thermal hydraulics,and cultural heritage.The neutron source intensity of NCT is usually low and the scan time is long,resulting in a projection image containing severe noise.To reduce the scanning time and increase the image reconstruction quality,an effective reconstruction algorithm must be selected.In CT image reconstruction,the reconstruction algorithms can be divided into three categories:analytical algorithms,iterative algorithms,and deep learning.Because the analytical algorithm requires complete projection data,it is not suitable for reconstruction in harsh environments,such as strong radia-tion,high temperature,and high pressure.Deep learning requires large amounts of data and complex models,which cannot be easily deployed,as well as has a high computational complexity and poor interpretability.Therefore,this paper proposes the OS-SART-PDTV iterative algorithm,which uses the ordered subset simultaneous algebraic reconstruction technique(OS-SART)algorithm to reconstruct the image and the first-order primal–dual algorithm to solve the total variation(PDTV),for sparse-view NCT three-dimensional reconstruction.The novel algorithm was compared with other algorithms(FBP,OS-SART-TV,OS-SART-AwTV,and OS-SART-FGPTV)by simulating the experimental data and actual neutron projection experiments.The reconstruction results demonstrate that the proposed algorithm outperforms the FBP,OS-SART-TV,OS-SART-AwTV,and OS-SART-FGPTV algorithms in terms of preserving edge structure,denoising,and suppressing artifacts. 展开更多
关键词 NCT First-order primal-dual algorithm OS-SART Total variation Sparse-view
下载PDF
A Primal-Dual SGD Algorithm for Distributed Nonconvex Optimization 被引量:4
3
作者 Xinlei Yi Shengjun Zhang +2 位作者 Tao Yang Tianyou Chai Karl Henrik Johansson 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第5期812-833,共22页
The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered.This problem is an important component of... The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered.This problem is an important component of many machine learning techniques with data parallelism,such as deep learning and federated learning.We propose a distributed primal-dual stochastic gradient descent(SGD)algorithm,suitable for arbitrarily connected communication networks and any smooth(possibly nonconvex)cost functions.We show that the proposed algorithm achieves the linear speedup convergence rate O(1/(√nT))for general nonconvex cost functions and the linear speedup convergence rate O(1/(nT)) when the global cost function satisfies the Polyak-Lojasiewicz(P-L)condition,where T is the total number of iterations.We also show that the output of the proposed algorithm with constant parameters linearly converges to a neighborhood of a global optimum.We demonstrate through numerical experiments the efficiency of our algorithm in comparison with the baseline centralized SGD and recently proposed distributed SGD algorithms. 展开更多
关键词 Distributed nonconvex optimization linear speedup Polyak-Lojasiewicz(P-L)condition primal-dual algorithm stochastic gradient descent
下载PDF
A Primal-Dual Simplex Algorithm for Solving Linear Programming Problems with Symmetric Trapezoidal Fuzzy Numbers 被引量:1
4
作者 Ali Ebrahimnejad 《Applied Mathematics》 2011年第6期676-684,共9页
Two existing methods for solving a class of fuzzy linear programming (FLP) problems involving symmetric trapezoidal fuzzy numbers without converting them to crisp linear programming problems are the fuzzy primal simpl... Two existing methods for solving a class of fuzzy linear programming (FLP) problems involving symmetric trapezoidal fuzzy numbers without converting them to crisp linear programming problems are the fuzzy primal simplex method proposed by Ganesan and Veeramani [1] and the fuzzy dual simplex method proposed by Ebrahimnejad and Nasseri [2]. The former method is not applicable when a primal basic feasible solution is not easily at hand and the later method needs to an initial dual basic feasible solution. In this paper, we develop a novel approach namely the primal-dual simplex algorithm to overcome mentioned shortcomings. A numerical example is given to illustrate the proposed approach. 展开更多
关键词 FUZZY Linear PROGRAMMING FUZZY ARITHMETIC FUZZY ORDERS primal-dual SIMPLEX algorithm
下载PDF
A Primal-dual Interior Point Method for Nonlinear Programming
5
作者 张珊 姜志侠 《Northeastern Mathematical Journal》 CSCD 2008年第3期275-282,共8页
In this paper, we propose a primal-dual interior point method for solving general constrained nonlinear programming problems. To avoid the situation that the algorithm we use may converge to a saddle point or a local ... In this paper, we propose a primal-dual interior point method for solving general constrained nonlinear programming problems. To avoid the situation that the algorithm we use may converge to a saddle point or a local maximum, we utilize a merit function to guide the iterates toward a local minimum. Especially, we add the parameter ε to the Newton system when calculating the decrease directions. The global convergence is achieved by the decrease of a merit function. Furthermore, the numerical results confirm that the algorithm can solve this kind of problems in an efficient way. 展开更多
关键词 primal-dual interior point algorithm merit function global convergence nonlinear programming
下载PDF
A primal-dual approximation algorithm for the k-prize-collecting minimum vertex cover problem with submodular penalties 被引量:1
6
作者 Xiaofei LIU Weidong LI Jinhua YANG 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第3期125-132,共8页
In this paper,we consider the-prize-collecting minimum vertex cover problem with submodular penalties,which generalizes the well-known minimum vertex cover problem,minimum partial vertex cover problem and minimum vert... In this paper,we consider the-prize-collecting minimum vertex cover problem with submodular penalties,which generalizes the well-known minimum vertex cover problem,minimum partial vertex cover problem and minimum vertex cover problem with submodular penalties.We are given a cost graph and an integer.This problem determines a vertex set such that covers at least edges.The objective is to minimize the total cost of the vertices in plus the penalty of the uncovered edge set,where the penalty is determined by a submodular function.We design a two-phase combinatorial algorithm based on the guessing technique and the primal-dual framework to address the problem.When the submodular penalty cost function is normalized and nondecreasing,the proposed algorithm has an approximation factor of.When the submodular penalty cost function is linear,the approximation factor of the proposed algorithm is reduced to,which is the best factor if the unique game conjecture holds. 展开更多
关键词 vertex cover k-prize-collecting primal-dual approximation algorithm
原文传递
Complexity analysis of interior-point algorithm based on a new kernel function for semidefinite optimization 被引量:3
7
作者 钱忠根 白延琴 王国强 《Journal of Shanghai University(English Edition)》 CAS 2008年第5期388-394,共7页
Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with si... Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with simple algebraic expression is proposed. Based on this kernel function, a primal-dual interior-point methods (IPMs) for semidefinite optimization (SDO) is designed. And the iteration complexity of the algorithm as O(n^3/4 log n/ε) with large-updates is established. The resulting bound is better than the classical kernel function, with its iteration complexity O(n log n/ε) in large-updates case. 展开更多
关键词 interior-point algorithm primal-dual method semidefinite optimization (SDO) polynomial complexity
下载PDF
Approximation Algorithms for the Priority Facility Location Problem with Penalties 被引量:1
8
作者 WANG Fengmin XU Dachuan WU Chenchen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第5期1102-1114,共13页
develop a mentation This paper considers the priority facility primal-dual 3-approximation algorithm for procedure, the authors further improve the location problem with penalties: The authors this problem. Combining... develop a mentation This paper considers the priority facility primal-dual 3-approximation algorithm for procedure, the authors further improve the location problem with penalties: The authors this problem. Combining with the greedy aug- previous ratio 3 to 1.8526. 展开更多
关键词 Approximation algorithm facility location problem greedy augmentation primal-dual
下载PDF
A Primal-Dual Algorithm for the Generalized Prize-Collecting Steiner Forest Problem 被引量:2
9
作者 Lu Han Da-Chuan Xu +1 位作者 Dong-Lei Du Chen-Chen Wu 《Journal of the Operations Research Society of China》 EI CSCD 2017年第2期219-231,共13页
In this paper,we consider the generalized prize-collecting Steiner forest problem,extending the prize-collecting Steiner forest problem.In this problem,we are given a connected graph G=(V,E)and a set of vertex sets V=... In this paper,we consider the generalized prize-collecting Steiner forest problem,extending the prize-collecting Steiner forest problem.In this problem,we are given a connected graph G=(V,E)and a set of vertex sets V={V1,V2,…,Vl}.Every edge in E has a nonnegative cost,and every vertex set in V has a nonnegative penalty cost.For a given edge set F⊆E,vertex set Vi∈V is said to be connected by edge set F if Vi is in a connected component of the F-spanned subgraph.The objective is to find such an edge set F such that the total edge cost in F and the penalty cost of the vertex sets not connected by F is minimized.Our main contribution is to give a 3-approximation algorithm for this problem via the primal-dual method. 展开更多
关键词 Prize-collecting Steiner forest Approximation algorithm primal-dual
原文传递
Path-following interior point algorithms for the Cartesian P_*(κ)-LCP over symmetric cones 被引量:5
10
作者 LUO ZiYan XIU NaiHua 《Science China Mathematics》 SCIE 2009年第8期1769-1784,共16页
In this paper, we establish a theoretical framework of path-following interior point al- gorithms for the linear complementarity problems over symmetric cones (SCLCP) with the Cartesian P*(κ)-property, a weaker condi... In this paper, we establish a theoretical framework of path-following interior point al- gorithms for the linear complementarity problems over symmetric cones (SCLCP) with the Cartesian P*(κ)-property, a weaker condition than the monotonicity. Based on the Nesterov-Todd, xy and yx directions employed as commutative search directions for semidefinite programming, we extend the variants of the short-, semilong-, and long-step path-following algorithms for symmetric conic linear programming proposed by Schmieta and Alizadeh to the Cartesian P*(κ)-SCLCP, and particularly show the global convergence and the iteration complexities of the proposed algorithms. 展开更多
关键词 Cartesian P *(κ)-property symmetric cone linear complementarity problem path-following interior point algorithm global convergence COMPLEXITY 90C33 90C51
原文传递
A PRIMAL-DUAL FIXED POINT ALGORITHM FOR MULTI-BLOCK CONVEX MINIMIZATION 被引量:1
11
作者 Peijun Chen Jianguo Huang Xiaoqun Zhang 《Journal of Computational Mathematics》 SCIE CSCD 2016年第6期723-738,共16页
We have proposed a primal-dual fixed point algorithm (PDFP) for solving minimiza- tion of the sum of three convex separable functions, which involves a smooth function with Lipschitz continuous gradient, a linear co... We have proposed a primal-dual fixed point algorithm (PDFP) for solving minimiza- tion of the sum of three convex separable functions, which involves a smooth function with Lipschitz continuous gradient, a linear composite nonsmooth function, and a nonsmooth function. Compared with similar works, the parameters in PDFP are easier to choose and are allowed in a relatively larger range. We will extend PDFP to solve two kinds of separable multi-block minimization problems, arising in signal processing and imaging science. This work shows the flexibility of applying PDFP algorithm to multi-block prob- lems and illustrates how practical and fully splitting schemes can be derived, especially for parallel implementation of large scale problems. The connections and comparisons to the alternating direction method of multiplier (ADMM) are also present. We demonstrate how different algorithms can be obtained by splitting the problems in different ways through the classic example of sparsity regularized least square model with constraint. In particular, for a class of linearly constrained problems, which are of great interest in the context of multi-block ADMM, can be also solved by PDFP with a guarantee of convergence. Finally, some experiments are provided to illustrate the performance of several schemes derived by the PDFP algorithm. 展开更多
关键词 primal-dual fixed point algorithm Multi-block optimization problems.
原文传递
Several Variants of the Primal-Dual Hybrid Gradient Algorithm with Applications
12
作者 Jianchao Bai Jicheng Li Zhie Wu 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2020年第1期176-199,共24页
By reviewing the primal-dual hybrid gradient algorithm(PDHG)pro-posed by He,You and Yuan(SIAM J.Image Sci.,7(4)(2014),pp.2526–2537),in this paper we introduce four improved schemes for solving a class of saddle-point... By reviewing the primal-dual hybrid gradient algorithm(PDHG)pro-posed by He,You and Yuan(SIAM J.Image Sci.,7(4)(2014),pp.2526–2537),in this paper we introduce four improved schemes for solving a class of saddle-point problems.Convergence properties of the proposed algorithms are ensured based on weak assumptions,where none of the objective functions are assumed to be strongly convex but the step-sizes in the primal-dual updates are more flexible than the pre-vious.By making use of variational analysis,the global convergence and sublinear convergence rate in the ergodic/nonergodic sense are established,and the numer-ical efficiency of our algorithms is verified by testing an image deblurring problem compared with several existing algorithms. 展开更多
关键词 Saddle-point problem primal-dual hybrid gradient algorithm variational inequality convergence complexity image deblurring
原文传递
A Primal-Dual Interior-Point Method for Optimal Grasping Manipulation of Multi-fingered Hand-Arm Robots
13
作者 Yan-Qin Bai Xue-Rui Gao Chang-Jun Yu 《Journal of the Operations Research Society of China》 EI CSCD 2017年第2期177-192,共16页
In this paper,we consider an optimization problem of the grasping manipulation of multi-fingered hand-arm robots.We first formulate an optimization model for the problem,based on the dynamic equations of the object a... In this paper,we consider an optimization problem of the grasping manipulation of multi-fingered hand-arm robots.We first formulate an optimization model for the problem,based on the dynamic equations of the object and the friction constraints.Then,we reformulate the model as a convex quadratic programming over circular cones.Moreover,we propose a primal-dual interior-point algorithm based on the kernel function to solve this convex quadratic programming over circular cones.We derive both the convergence of the algorithm and the iteration bounds for largeand small-update methods,respectively.Finally,we carry out the numerical tests of 180◦and 90◦manipulations of the hand-arm robot to demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 Grasping manipulation Circular cone programming primal-dual interior-point algorithm Numerical tests
原文传递
A variational formulation for physical noised image segmentation
14
作者 LOU Qiong PENG Jia-lin KONG De-xing 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2015年第1期77-92,共16页
Image segmentation is a hot topic in image science. In this paper we present a new variational segmentation model based on the theory of Mumford-Shah model. The aim of our model is to divide noised image, according to... Image segmentation is a hot topic in image science. In this paper we present a new variational segmentation model based on the theory of Mumford-Shah model. The aim of our model is to divide noised image, according to a certain criterion, into homogeneous and smooth regions that should correspond to structural units in the scene or objects of interest. The proposed region-based model uses total variation as a regularization term, and different fidelity term can be used for image segmentation in the cases of physical noise, such as Gaussian, Poisson and multiplicative speckle noise. Our model consists of five weighted terms, two of them are responsible for image denoising based on fidelity term and total variation term, the others assure that the three conditions of adherence to the data, smoothing, and discontinuity detection are met at once. We also develop a primal-dual hybrid gradient algorithm for our model. Numerical results on various synthetic and real images are provided to compare our method with others, these results show that our proposed model and algorithms are effective. 展开更多
关键词 image segmentation variational method image denoising primal-dual hybrid gradient algorithm non-Gaussian noise.
下载PDF
An Approximation Algorithm for P-prize-collecting Set Cover Problem
15
作者 Jin-Shuang Guo Wen Liu Bo Hou 《Journal of the Operations Research Society of China》 EI CSCD 2023年第1期207-217,共11页
In this paper,we consider the P-prize-collecting set cover(P-PCSC)problem,which is a generalization of the set cover problem.In this problem,we are given a set system(U,S),where U is a ground set and S⊆2U is a collect... In this paper,we consider the P-prize-collecting set cover(P-PCSC)problem,which is a generalization of the set cover problem.In this problem,we are given a set system(U,S),where U is a ground set and S⊆2U is a collection of subsets satisfying∪S∈SS=U.Every subset in S has a nonnegative cost,and every element in U has a nonnegative penalty cost and a nonnegative profit.Our goal is to find a subcollection C⊆S such that the total cost,consisting of the cost of subsets in C and the penalty cost of the elements not covered by C,is minimized and at the same time the combined profit of the elements covered by C is at least P,a specified profit bound.Our main work is to obtain a 2f+ε-approximation algorithm for the P-PCSC problem by using the primal-dual and Lagrangian relaxation methods,where f is the maximum frequency of an element in the given set system(U,S)andεis a fixed positive number. 展开更多
关键词 P-prize-collecting set cover problem Approximation algorithm primal-dual Lagrangian relaxation
原文传递
Complexity Analysis of an Interior Point Algorithm for the Semidefinite Optimization Based on a Kernel Function with a Double Barrier Term 被引量:1
16
作者 Mohamed ACHACHE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第3期543-556,共14页
In this paper, we establish the polynomial complexity of a primal-dual path-following interior point algorithm for solving semidefinite optimization(SDO) problems. The proposed algorithm is based on a new kernel fun... In this paper, we establish the polynomial complexity of a primal-dual path-following interior point algorithm for solving semidefinite optimization(SDO) problems. The proposed algorithm is based on a new kernel function which differs from the existing kernel functions in which it has a double barrier term. With this function we define a new search direction and also a new proximity function for analyzing its complexity. We show that if q1 〉 q2 〉 1, the algorithm has O((q1 + 1) nq1+1/2(q1-q2)logn/ε)and O((q1 + 1)2(q1-q2)^3q1-2q2+1√n logn/c) complexity results for large- and small-update methods, respectively. 展开更多
关键词 Semidefinite optimization kernel functions primal-dual interior point methods large andsmall-update algorithms complexity of algorithms
原文传递
An Approximation Algorithm for the Generalized Prize-Collecting Steiner Forest Problem with Submodular Penalties
17
作者 Xiao-Dan Jia Bo Hou Wen Liu 《Journal of the Operations Research Society of China》 EI CSCD 2022年第1期183-192,共10页
In this paper,we consider the generalized prize-collecting Steiner forest problem with submodular penalties(GPCSF-SP problem).In this problem,we are given an undirected connected graph G=(V,E)and a collection of disjo... In this paper,we consider the generalized prize-collecting Steiner forest problem with submodular penalties(GPCSF-SP problem).In this problem,we are given an undirected connected graph G=(V,E)and a collection of disjoint vertex subsets V={V_(1),V_(2),…,V_(l)}.Assume c:E→R_(+)is an edge cost function andπ:2^(V)→R_(+)is a submodular penalty function.The objective of the GPCSF-SP problem is to find an edge subset F such that the total cost including the edge cost in F and the penalty cost of the subcollection S containing these Vi not connected by F is minimized.By using the primal-dual technique,we give a 3-approximation algorithm for this problem. 展开更多
关键词 Generalized prize-collecting Steiner forest problem Submodular function primal-dual algorithm
原文传递
AN EXTENSION OF PREDICTOR-CORRECTOR ALGORITHM TO A CLASS OF CONVEX SEPARABLE PROGRAM
18
作者 郭田德 吴士泉 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1997年第4期362-370,共6页
redictor-corrector algorithm for linear programming, proposed by Mizuno et al. [1], becomes the best-known in the interior point methods. In this paper it is modified and then extended to solving a class of convex sep... redictor-corrector algorithm for linear programming, proposed by Mizuno et al. [1], becomes the best-known in the interior point methods. In this paper it is modified and then extended to solving a class of convex separable programming problems. 展开更多
关键词 Convex separable programming problem predictor-corrector algorithm interior point algorithm path-following
全文增补中
A Two-Stage Color Image Segmentation Method Based on Saturation-Value Total Variation
19
作者 Tiange Wang Hok Shing Wong 《Advances in Applied Mathematics and Mechanics》 SCIE 2023年第1期94-117,共24页
Color image segmentation is crucial in image processing and computer vision.Most traditional segmentation methods simply regard an RGB color image as the direct combination of the three monochrome images and ignore th... Color image segmentation is crucial in image processing and computer vision.Most traditional segmentation methods simply regard an RGB color image as the direct combination of the three monochrome images and ignore the inherent color structures within channels,which contain some key feature information of the image.To better describe the relationship of color channels,we introduce a quaternion-based regularization that can reflect the image characteristics more intuitively.Our model combines the idea of the Mumford-Shah model-based two-stage segmentation method and the Saturation-Value Total Variation regularization for color image segmentation.The new strategy first extracts features from the color image and then subdivides the image in a new color feature space which achieves better performance than methods in RGB color space.Moreover,to accelerate the optimization process,we use a new primal-dual algorithm to solve our novel model.Numerical results demonstrate clearly that the performance of our proposed method is excellent. 展开更多
关键词 Color space pure quaternion image segmentation total variation primal-dual algorithm
原文传递
Total Variation Based Parameter-Free Model for Impulse Noise Removal 被引量:3
20
作者 Federica Sciacchitano Yiqiu Dong Martin S.Andersen 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2017年第1期186-204,共19页
We propose a new two-phase method for reconstruction of blurred im-ages corrupted by impulse noise.In the first phase,we use a noise detector to iden-tify the pixels that are contaminated by noise,and then,in the seco... We propose a new two-phase method for reconstruction of blurred im-ages corrupted by impulse noise.In the first phase,we use a noise detector to iden-tify the pixels that are contaminated by noise,and then,in the second phase,we reconstruct the noisy pixels by solving an equality constrained total variation mini-mization problem that preserves the exact values of the noise-free pixels.For images that are only corrupted by impulse noise(i.e.,not blurred)we apply the semismooth Newton’s method to a reduced problem,and if the images are also blurred,we solve the equality constrained reconstruction problem using a first-order primal-dual algo-rithm.The proposed model improves the computational efficiency(in the denoising case)and has the advantage of being regularization parameter-free.Our numerical results suggest that the method is competitive in terms of its restoration capabilities with respect to the other two-phase methods. 展开更多
关键词 Image deblurring image denoising impulse noise noise detector primal-dual first-order algorithm semismooth Newton method total variation regularization
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部