期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Assessment of tobacco heating system 2.4 on osteogenic differentiation of mesenchymal stem cells and primary human osteoblasts compared to conventional cigarettes 被引量:1
1
作者 Romina H Aspera-Werz Sabrina Ehnert +5 位作者 Monja Müller Sheng Zhu Tao Chen Weidong Weng Johann Jacoby Andreas K Nussler 《World Journal of Stem Cells》 SCIE CAS 2020年第8期841-856,共16页
BACKGROUND Cigarette smoking(CS)is the most common method of consuming tobacco.Deleterious effects on bone integrity,increased incidence of fractures,and delayed fracture healing are all associated with CS.Over 150 of... BACKGROUND Cigarette smoking(CS)is the most common method of consuming tobacco.Deleterious effects on bone integrity,increased incidence of fractures,and delayed fracture healing are all associated with CS.Over 150 of the 6500 molecular species contained in cigarette smoke and identified as toxic compounds are inhaled by CS and,via the bloodstream,reach the skeletal system.New technologies designed to develop a reduced-risk alternative for smokers are based on electronic nicotine delivery systems,such as e-cigarettes and tobacco heating systems(THS).THS are designed to heat tobacco instead of burning it,thereby reducing the levels of harmful toxic compounds released.AIM To examine the effects of THS on osteoprogenitor cell viability and function compared to conventional CS.METHODS Human immortalized mesenchymal stem cells(n=3)and primary human preosteoblasts isolated from cancellous bone samples from BG Unfall Klinik Tübingen(n=5)were osteogenically differentiated in vitro with aqueous extracts generated from either the THS 2.4“IQOS”or conventional“Marlboro”cigarettes for up to 21 d.Cell viability was analyzed using resazurin conversion assay(mitochondrial activity)and calcein-AM staining(esterase activity).Osteogenic differentiation and bone cell function were evaluated using alkaline phosphatase(AP)activity,while matrix formation was analyzed through alizarin red staining.Primary cilia structure was examined by acetylatedα-tubulin immunofluorescent staining.Free radical production was evaluated with 2’,7’-dichlorofluoresceindiacetate assay.RESULTS Our data clearly show that THS is significantly less toxic to bone cells than CS when analyzed by mitochondrial and esterase activity(P<0.001).No significant differences in cytotoxicity between the diverse flavors of THS were observed.Harmful effects from THS on bone cell function were observed only at very high,non-physiological concentrations.In contrast,extracts from conventional cigarettes significantly reduced the AP activity(by two-fold)and matrix mineralization(four-fold)at low concentrations.Additionally,morphologic analysis of primary cilia revealed no significant changes in the length of the organelle involved in osteogenesis of osteoprogenitor cells,nor in the number of ciliated cells following THS treatment.Assessment of free radical production demonstrated that THS induced significantly less oxidative stress than conventional CS in osteoprogenitor cells.CONCLUSIONTHS was significantly less harmful to osteoprogenitor cells during osteogenesisthan conventional CS. Additional studies are required to confirm whether THS isa better alternative for smokers to improve delays in bone healing followingfracture. 展开更多
关键词 primary human osteoblast Cigarette smoke Tobacco heating system Mesenchymal stem cells Electronic nicotine delivery systems BONE
下载PDF
A cost-effective method to enhance adenoviral transduction of primary murine osteoblasts and bone marrow stromal cells
2
作者 Atum M Buo Mark S Williams +1 位作者 Jaclyn P Kerr Joseph P Stains 《Bone Research》 SCIE CAS CSCD 2016年第2期91-100,共10页
We report here a method for the use of poly-L-lysine (PLL) to markedly improve the adenoviral transduction efficiency of primary murine osteoblasts and bone marrow stromal cells (BMSCs) in culture and in situ, whi... We report here a method for the use of poly-L-lysine (PLL) to markedly improve the adenoviral transduction efficiency of primary murine osteoblasts and bone marrow stromal cells (BMSCs) in culture and in situ, which are typically difficult to transduce. We show by fluorescence microscopy and flow cytometry that the addition of PLL to the viral-containing medium significantly increases the number of green fluorescence protein (GFP)-positive osteoblasts and BMSCs transduced with an enhanced GFP-expressing adenovirus. We also demonstrate that PLL can greatly enhance the adenoviral transduction of osteoblasts and osteocytes in situ in ex vivo tibia and calvaria, as well as in long bone fragments. In addition, we validate that PLL can improve routine adenoviral transduction studies by permitting the use of low multiplicities of infection to obtain the desired biologic effect. Ultimately, the use of PLL to facilitate adenoviral gene transfer in osteogenic cells can provide a cost-effective means of performing efficient gene transfer studies in the context of bone research. 展开更多
关键词 A cost-effective method to enhance adenoviral transduction of primary murine osteoblasts and bone marrow stromal cells PLL bone
下载PDF
Calcitonin gene-related peptide induces proliferation and monocyte chemoattractant protein-1 expression via extracellular signal-regulated kinase activation in rat osteoblasts 被引量:9
3
作者 HAN Na ZHANG Dian-ying WANG Tian-bing ZHANG Pei-xun JIANG Bao-guo 《Chinese Medical Journal》 SCIE CAS CSCD 2010年第13期1748-1753,共6页
Background Calcitonin gene-related peptide (CGRP), a sensory neuropeptide, affects osteoblast proliferation and bone formation. However, the mechanisms are not fully understood. Monocyte chemoattractant protein-1 (... Background Calcitonin gene-related peptide (CGRP), a sensory neuropeptide, affects osteoblast proliferation and bone formation. However, the mechanisms are not fully understood. Monocyte chemoattractant protein-1 (MCP-1) is a chemokine that stimulates the migration of monocytes and plays important roles in regulating bone remolding during fracture repair. In this study, we investigated the effects of CGRP on proliferation and MCP-1 expression in cultured rat osteoblasts. Methods Primary rat osteoblasts were isolated from fetal rats calvariae. Cells were exposed to gradient concentrations (10^-9 to 10^-7 mol/L) of CGRP. Protein and mRNA levels of MCP-1 were quantified by Western blotting and semiquantitative reverse transcdption-polymerase chain reaction, respectively. The protein level of MCP-1 was investigated and compared in cell culture media by enzyme linked immunosorbent assay (ELISA). Phospho-extracellular signal-regulated kinase (ERK) expression was detected by Western blotting. Cell proliferative activity was measured by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) and BrdU assay. The effects of MAPK/ERK kinase (MEK)-inhibitor U0126 on CGRP-induced MCP-1 expression in primary rat osteoblasts were examined. Results CGRP effectively enhanced primary rat osteoblast proliferation and led to significant increases in the expression of MCP-1 mRNA and protein in time- and dose-dependent manners. CGRP activated the ERK pathway. Pretreatment of cultured rat osteoblasts with MEK inhibitor U0126 resulted in dose-dependent inhibitions of CGRP-induced MCP-1 mRNA and protein levels. Thus, CGRP promoted cell proliferation and stimulated MCP-1 expression in cultured rat osteoblasts. Conclusion These studies document novel links between CGRP and MCP-1 and illuminate the effects of CGRP in regulating bone remodeling. 展开更多
关键词 calcitonin gene-related peptide monocyte chemoattractant protein-I rat primary osteoblasts extracellular signal-regulated kinase
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部