Clustered regularly interspaced palindromic repeats(CRISPR)/CRISPR-associated protein(Cas)-mediated genome editing has greatly accelerated progress in plant genetic research and agricultural breeding by enabling targe...Clustered regularly interspaced palindromic repeats(CRISPR)/CRISPR-associated protein(Cas)-mediated genome editing has greatly accelerated progress in plant genetic research and agricultural breeding by enabling targeted genomic modifications.Moreover,the prime editing system,derived from the CRISPR/Cas system,has opened the door for even more precise genome editing.Prime editing has the capability to facilitate all 12 types of base-to-base conversions,as well as desired insertions or deletions of fragments,without inducing double-strand breaks and requiring donor DNA templet.In a short time,prime editing has been rapidly verified as functional in various plants,and can be used in plant genome functional analysis as well as precision breeding of crops.In this review,we summarize the emergence and development of prime editing,highlight recent advances in improving its efficiency in plants,introduce the current applications of prime editing in plants,and look forward to future prospects for utilizing prime editing in genetic improvement and precision molecular breeding.展开更多
由于植物细胞内同源重组频率较低、供体传递受限等原因,对植物基因组进行精准编辑十分困难。近期,中国科学院遗传与发育生物学研究所高彩霞团队构建了适用于植物的引导编辑器(plant prime editor,PPE)系统,并在重要作物水稻和小麦中完...由于植物细胞内同源重组频率较低、供体传递受限等原因,对植物基因组进行精准编辑十分困难。近期,中国科学院遗传与发育生物学研究所高彩霞团队构建了适用于植物的引导编辑器(plant prime editor,PPE)系统,并在重要作物水稻和小麦中完成了引导编辑。该系统不产生DNA双链断裂,仍可高度准确实现所有可能的12种单碱基替换、多碱基替换及片段缺失插入,从而为植物基因组精确编辑提供了多用途工具。本文介绍了PPE的组成结构和编辑能力,同时也结合其他研究组随后发表的报告综述了植物引导编辑器的优化探索,为合理使用PPEs和继续开展优化工作提供帮助。展开更多
Prime editing is a versatile CRISPR/Cas-based precise genome-editing technique for crop breeding.Four new types of prime editors(PEs)named PE6a–d were recently generated using evolved and engineered reverse transcrip...Prime editing is a versatile CRISPR/Cas-based precise genome-editing technique for crop breeding.Four new types of prime editors(PEs)named PE6a–d were recently generated using evolved and engineered reverse transcriptase(RT)variants from three different sources.In this study,we tested the editing efficiencies of four PE6 variants and two additional PE6 constructs with double-RT modules in transgenic rice(Oryza sativa)plants.PE6c,with an evolved and engineered RT variant from the yeast Tf1 retrotransposon,yielded the highest prime-editing efficiency.The average fold change in the editing efficiency of PE6c compared with PEmax exceeded 3.5 across 18 agronomically important target sites from 15 genes.We also demonstrated the feasibility of using two RT modules to improve prime-editing efficiency.Our results suggest that PE6c or its derivatives would be an excellent choice for prime editing in monocot plants.In addition,our findings have laid a foundation for prime-editing-based breeding of rice varieties with enhanced agronomically important traits.展开更多
Prime editing(PE)is a versatile CRISPR-Cas based precise genome-editing platform widely used to introduce a range of possible base conversions in various organisms.However,no PE systems have been shown to induce herit...Prime editing(PE)is a versatile CRISPR-Cas based precise genome-editing platform widely used to introduce a range of possible base conversions in various organisms.However,no PE systems have been shown to induce heritable mutations in tobacco,nor in any other dicot.In this study,we generated an efficient PE system in tobacco that not only introduced heritable mutations,but also enabled anthocyanin-based reporter selection of transgene-free T_(1) plants.This system was used to confer Zabienol biosynthesis in the allotetraploid tobacco cultivar HHDJY by restoring a G>T conversion in the NtCPS2 gene.High levels of Z-abienol were detected in the leaves of homozygous T_(1) plants at two weeks after topping.This study describes an advance in PE systems and expands genome-editing toolbox in tobacco,even in dicots,for use in basic research and molecular breeding.And restoring biosynthesis of Z-abienol in tobacco might provide an efficient way to obtain Z-abienol in plants.展开更多
The rapid development of genome editing technology has brought major breakthroughs in the fields of life science and medicine. In recent years, the clustered regularly interspaced short palindromic repeats(CRISPR)-bas...The rapid development of genome editing technology has brought major breakthroughs in the fields of life science and medicine. In recent years, the clustered regularly interspaced short palindromic repeats(CRISPR)-based genome editing toolbox has been greatly expanded, not only with emerging CRISPR-associated protein(Cas) nucleases, but also novel applications through combination with diverse effectors. Recently, transposon-associated programmable RNA-guided genome editing systems have been uncovered, adding myriads of potential new tools to the genome editing toolbox. CRISPR-based genome editing technology has also revolutionized cardiovascular research. Here we first summarize the advances involving newly identified Cas orthologs, engineered variants and novel genome editing systems, and then discuss the applications of the CRISPR-Cas systems in precise genome editing, such as base editing and prime editing. We also highlight recent progress in cardiovascular research using CRISPR-based genome editing technologies, including the generation of genetically modified in vitro and animal models of cardiovascular diseases(CVD) as well as the applications in treating different types of CVD. Finally, the current limitations and future prospects of genome editing technologies are discussed.展开更多
Precise replacement of an allele with an elite allele controlling an important agronomic trait in a predefined manner by gene editing technologies is highly desirable in crop improvement.Base editing and prime editing...Precise replacement of an allele with an elite allele controlling an important agronomic trait in a predefined manner by gene editing technologies is highly desirable in crop improvement.Base editing and prime editing are two newly developed precision gene editing systems which can introduce the substitution of a single base and install the desired short indels to the target loci in the absence of double-strand breaks and donor repair templates,respectively.Since their discoveries,various strategies have been attempted to optimize both base editor(BE)and prime editor(PE)in order to improve the precise editing efficacy,specificity,and expand the targeting scopes.Here,we summarize the latest development of various BEs and PEs,as well as their applications in plants.Based on these progresses,we recommend the appropriate BEs and PEs for both basic plant research and crop improvement.Moreover,we propose the perspectives for further optimization of these two editors.We envision that both BEs and PEs will become the routine and customized precise gene editing tools for both plant biological research and crop improvement in the near future.展开更多
Efficient and precise genomic deletion shows promise for investigating the function of proteins in plant research and enhancing agricultural traits.In this study,we tested the PRIME-Del(PDel)strategy using a pair of p...Efficient and precise genomic deletion shows promise for investigating the function of proteins in plant research and enhancing agricultural traits.In this study,we tested the PRIME-Del(PDel)strategy using a pair of prime editing guide RNAs(pegRNAs)that targeted opposite DNA strands and achieved an average deletion efficiency of 55.8%for 60 bp fragment deletions at six endogenous targets.Moreover,as high as 84.2%precise deletion efficiency was obtained for a 2000 bp deletion at the OsGS1 site in transgenic rice plants.To add the bases that were unintentionally deleted between the two nicking sequences,we used the PDel/Syn strategy,which introduced multiple synonymous base mutations in the region that had to be patched in the RT template.The PDel/Syn strategy achieved an average of 58.1%deletion efficiency at six endogenous targets,which was higher than the PDel strategy.The strategies presented in this study contribute to achieving more accurate and flexible deletions in transgenic rice plants.展开更多
Prime editing(PE)is a recent gene editing technology that can mediate insertions or deletions and all twelve types of base-tobase conversions.However,its low efficiency hampers the application in creating novel breeds...Prime editing(PE)is a recent gene editing technology that can mediate insertions or deletions and all twelve types of base-tobase conversions.However,its low efficiency hampers the application in creating novel breeds and biomedical models,especially in pigs and other important farm animals.Here,we demonstrate that the pig genome is editable using the PE system,but the editing efficiency was quite low as expected.Therefore,we aimed to enhance PE efficiency by modulating both exogenous PE tools and endogenous pathways in porcine embryonic fibroblasts(PEFs).First,we modified the peg RNA by extending the duplex length and mutating the fourth thymine in a continuous sequence of thymine bases to cytosine,which significantly enhanced PE efficiency by improving the expression of peg RNA and targeted cleavage.Then,we targeted SAMHD1,a deoxynucleoside triphosphate triphosphohydrolase(d NTPase)that impedes the reverse transcription process in retroviruses,and found that treatment with its inhibitor,cephalosporin C zinc salt(CPC),increased PE efficiency up to 29-fold(4-fold on average),presumably by improving the reverse transcription process of Moloney murine leukemia virus reverse transcriptase(M-MLV RT)in the PE system.Moreover,PE efficiency was obviously improved by treatment with a panel of histone deacetylase inhibitors(HDACis).Among the four HDACis tested,panobinostat was the most efficient,with an efficiency up to 122-fold(7-fold on average),partly due to the considerable HDACi-mediated increase in transgene expression.In addition,the synergistic use of the three strategies further enhanced PE efficiency in PEFs.Our study provides novel approaches for optimization of the PE system and broadens the application scope of PE in agriculture and biomedicine.展开更多
Oil crops,mainly comprised of soybean,rapeseed,groundnut,sunflower and etc.,have provided substantial edible oil and other tremendous nutrients for human beings,as well as valuable biofuels for associated industries.T...Oil crops,mainly comprised of soybean,rapeseed,groundnut,sunflower and etc.,have provided substantial edible oil and other tremendous nutrients for human beings,as well as valuable biofuels for associated industries.The genetic improvement of significant oil crops and/or domesticating novel high-yielding oil crops are in urgent need to cope with the ever-increasing demand for various oil crop products.CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)-based genome editing technology,born a few years ago,edits stretches of DNA in a targeted and RNA-dependent fashion.The Characteristics of targeted mutagenesis and easy manipulation owned by the technology make it have been applied to many plants and exhibited great potential in the genetic improvement of many important oil crops.In the face of growing need for oil crop products and the rapid developments in CRISPR-based genome editing technology,a critical review regarding the technology and its application in oil crops is badly required to provide references for the better use of this technology to modify the oil crops for higher yield.In this review paper,we briefly described the CRISPR-based genome editing technology and summarized its applications and future prospects in oil crops.展开更多
Low efficiency is the main obstacle to using prime editing in maize(Zea mays).Recently,prime-editing efficiency was greatly improved in mammalian cells and rice(Oryza sativa)plants by engineering primeediting guide RN...Low efficiency is the main obstacle to using prime editing in maize(Zea mays).Recently,prime-editing efficiency was greatly improved in mammalian cells and rice(Oryza sativa)plants by engineering primeediting guide RNAs(pegRNAs),optimizing the prime editor(PE)protein,and manipulating cellular determinants of prime editing.In this study,we tested PEs optimized via these three strategies in maize.We demonstrated that the ePE5max system,composed of PEmax,epegRNAs(pegRNA-evopreQ.1),nicking single guide RNAs(sgRNAs),and MLH1dn,efficiently generated heritable mutations that conferred resistance to herbicides that inhibit 5-enolpyruvylshikimate-3-phosphate synthase(EPSPS),acetolactate synthase(ALS),or acetyl CoA carboxylase(ACCase)activity.Collectively,we demonstrate that the ePE5max system has sufficient efficiency to generate heritable(homozygous or heterozygous)mutations in maize target genes and that the main obstacle to using PEs in maize has thus been removed.展开更多
Prime editing(PE)is a versatile genome editing tool without the need for double-stranded DNA breaks or donor DNA templates,but is limited by low editing efficiency.We previously fused the M-MLV reverse transcriptase t...Prime editing(PE)is a versatile genome editing tool without the need for double-stranded DNA breaks or donor DNA templates,but is limited by low editing efficiency.We previously fused the M-MLV reverse transcriptase to the Cas9 nickase,generating the PE2(v1)system,but the editing efficiency of this system is still low.Here we develop different versions of PE2 by adding the 50-to-30 exonuclease at different positions of the nCas9-M-MLV RT fusion protein.PE2(v2),in which the T5 exonuclease fused to the N-terminus of the nCas9-MMLV fusion protein enhances prime editing efficiency of base substitutions,deletions,and insertions at several genomic sites by 1.7-to 2.9-fold in plant cells compared to PE2(v1).The improved editing efficiency of PE2(v2)is further confirmed by generating increased heritable prime edits in stable transgenic plants compared to the previously established PE-P1,PE-P2,and PPE systems.Using PE2(v2),we generate herbicide-resistant rice by simultaneously introducing mutations causing amino acid substitutions at two target sites.The PE efficiency is further improved by combining PE2(v2)and dualpegRNAs.Taken together,the increased genome editing efficiency of PE2(v2)developed in this study may enhance the applications of PE in plants.展开更多
Prime-editing systems have the capability to perform efficient and precise genome editing in human cells.In this study,we first developed a plant prime editor 2(pPE2)system and test its activity by generating a target...Prime-editing systems have the capability to perform efficient and precise genome editing in human cells.In this study,we first developed a plant prime editor 2(pPE2)system and test its activity by generating a targeted mutation on an HPT^(-ATG) reporter in rice.Our results showed that the pPE2 system could induce programmable editing at different genome sites.In transgenic T0 plants,pPE2-generated mutants occurred with 0%–31.3%frequency,suggesting that the efficiency of pPE2 varied greatly at different genomic sites and with prime-editing guide RNAs of diverse structures.To optimize editing efficiency,guide RNAs were introduced into the pPE2 system following the PE3 and PE3b strategy in human cells.However,at the genomic sites tested in this study,pPE3 systems generated only comparable or even lower editing frequencies.Furthemore,we developed a surrogate pPE2 system by incorporating the HPT^(-ATG) reporter to enrich the prime-edited cells.The nucleotide editing was easily detected in the resistant calli transformed with the surrogate pPE2 system,presumably due to the enhanced screening efficiency of edited cells.Taken together,our results indicate that plant prime-editing systems we developed could provide versatile and flexible editing in rice genome.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3400200)the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences(Grant No.CAAS-ZDRW202001)the Earmarked Fund for China Agriculture Research System(Grant No.CARS-01-07).
文摘Clustered regularly interspaced palindromic repeats(CRISPR)/CRISPR-associated protein(Cas)-mediated genome editing has greatly accelerated progress in plant genetic research and agricultural breeding by enabling targeted genomic modifications.Moreover,the prime editing system,derived from the CRISPR/Cas system,has opened the door for even more precise genome editing.Prime editing has the capability to facilitate all 12 types of base-to-base conversions,as well as desired insertions or deletions of fragments,without inducing double-strand breaks and requiring donor DNA templet.In a short time,prime editing has been rapidly verified as functional in various plants,and can be used in plant genome functional analysis as well as precision breeding of crops.In this review,we summarize the emergence and development of prime editing,highlight recent advances in improving its efficiency in plants,introduce the current applications of prime editing in plants,and look forward to future prospects for utilizing prime editing in genetic improvement and precision molecular breeding.
文摘由于植物细胞内同源重组频率较低、供体传递受限等原因,对植物基因组进行精准编辑十分困难。近期,中国科学院遗传与发育生物学研究所高彩霞团队构建了适用于植物的引导编辑器(plant prime editor,PPE)系统,并在重要作物水稻和小麦中完成了引导编辑。该系统不产生DNA双链断裂,仍可高度准确实现所有可能的12种单碱基替换、多碱基替换及片段缺失插入,从而为植物基因组精确编辑提供了多用途工具。本文介绍了PPE的组成结构和编辑能力,同时也结合其他研究组随后发表的报告综述了植物引导编辑器的优化探索,为合理使用PPEs和继续开展优化工作提供帮助。
基金supported by grants from the National Key Research and Development Program of China(2023YFD1202905)and the National Natural Science Foundation of China(U19A2022).
文摘Prime editing is a versatile CRISPR/Cas-based precise genome-editing technique for crop breeding.Four new types of prime editors(PEs)named PE6a–d were recently generated using evolved and engineered reverse transcriptase(RT)variants from three different sources.In this study,we tested the editing efficiencies of four PE6 variants and two additional PE6 constructs with double-RT modules in transgenic rice(Oryza sativa)plants.PE6c,with an evolved and engineered RT variant from the yeast Tf1 retrotransposon,yielded the highest prime-editing efficiency.The average fold change in the editing efficiency of PE6c compared with PEmax exceeded 3.5 across 18 agronomically important target sites from 15 genes.We also demonstrated the feasibility of using two RT modules to improve prime-editing efficiency.Our results suggest that PE6c or its derivatives would be an excellent choice for prime editing in monocot plants.In addition,our findings have laid a foundation for prime-editing-based breeding of rice varieties with enhanced agronomically important traits.
基金supported by Beijing Scholars Program (BSP041)Financial Special Fund of Beijing Academy of Agriculture and Forestry Sciences (CZZJ202206)+1 种基金the key projects of YNZY (2022JY02)CNTC (110202101034,JY-11)。
文摘Prime editing(PE)is a versatile CRISPR-Cas based precise genome-editing platform widely used to introduce a range of possible base conversions in various organisms.However,no PE systems have been shown to induce heritable mutations in tobacco,nor in any other dicot.In this study,we generated an efficient PE system in tobacco that not only introduced heritable mutations,but also enabled anthocyanin-based reporter selection of transgene-free T_(1) plants.This system was used to confer Zabienol biosynthesis in the allotetraploid tobacco cultivar HHDJY by restoring a G>T conversion in the NtCPS2 gene.High levels of Z-abienol were detected in the leaves of homozygous T_(1) plants at two weeks after topping.This study describes an advance in PE systems and expands genome-editing toolbox in tobacco,even in dicots,for use in basic research and molecular breeding.And restoring biosynthesis of Z-abienol in tobacco might provide an efficient way to obtain Z-abienol in plants.
基金supported by the National Natural Science Foundation of China (82270355, 82270354, 81970134, 82030011, 31630093)the National Key Research and Development Program of China (2019YFA0801601, 2021YFA1101801)。
文摘The rapid development of genome editing technology has brought major breakthroughs in the fields of life science and medicine. In recent years, the clustered regularly interspaced short palindromic repeats(CRISPR)-based genome editing toolbox has been greatly expanded, not only with emerging CRISPR-associated protein(Cas) nucleases, but also novel applications through combination with diverse effectors. Recently, transposon-associated programmable RNA-guided genome editing systems have been uncovered, adding myriads of potential new tools to the genome editing toolbox. CRISPR-based genome editing technology has also revolutionized cardiovascular research. Here we first summarize the advances involving newly identified Cas orthologs, engineered variants and novel genome editing systems, and then discuss the applications of the CRISPR-Cas systems in precise genome editing, such as base editing and prime editing. We also highlight recent progress in cardiovascular research using CRISPR-based genome editing technologies, including the generation of genetically modified in vitro and animal models of cardiovascular diseases(CVD) as well as the applications in treating different types of CVD. Finally, the current limitations and future prospects of genome editing technologies are discussed.
基金funded by National Key Research and Development Program of China(2021YFF1000204)Nanfan Special Project,CAAS(ZDXM03)+1 种基金Hainan Yazhou Bay Seed Lab(B21HJ0215,B21Y10205)Key Laboratory of Gene Editing Technologies(Hainan),Ministry of Agriculture and Rural Affairs,China。
文摘Precise replacement of an allele with an elite allele controlling an important agronomic trait in a predefined manner by gene editing technologies is highly desirable in crop improvement.Base editing and prime editing are two newly developed precision gene editing systems which can introduce the substitution of a single base and install the desired short indels to the target loci in the absence of double-strand breaks and donor repair templates,respectively.Since their discoveries,various strategies have been attempted to optimize both base editor(BE)and prime editor(PE)in order to improve the precise editing efficacy,specificity,and expand the targeting scopes.Here,we summarize the latest development of various BEs and PEs,as well as their applications in plants.Based on these progresses,we recommend the appropriate BEs and PEs for both basic plant research and crop improvement.Moreover,we propose the perspectives for further optimization of these two editors.We envision that both BEs and PEs will become the routine and customized precise gene editing tools for both plant biological research and crop improvement in the near future.
基金supported by the Beijing Scholars Program(BSP041)Innovation Capabilities Construction Project of BAAFS(KJCX20210410)Postdoctoral fund of BAAFS(2023-ZZ-016)and Utility Fund of BAAFS.
文摘Efficient and precise genomic deletion shows promise for investigating the function of proteins in plant research and enhancing agricultural traits.In this study,we tested the PRIME-Del(PDel)strategy using a pair of prime editing guide RNAs(pegRNAs)that targeted opposite DNA strands and achieved an average deletion efficiency of 55.8%for 60 bp fragment deletions at six endogenous targets.Moreover,as high as 84.2%precise deletion efficiency was obtained for a 2000 bp deletion at the OsGS1 site in transgenic rice plants.To add the bases that were unintentionally deleted between the two nicking sequences,we used the PDel/Syn strategy,which introduced multiple synonymous base mutations in the region that had to be patched in the RT template.The PDel/Syn strategy achieved an average of 58.1%deletion efficiency at six endogenous targets,which was higher than the PDel strategy.The strategies presented in this study contribute to achieving more accurate and flexible deletions in transgenic rice plants.
基金supported by the National Key Research and Development Program of China (2020YFA0509503,2022YFF0710703,2021YFA0805902)the National Science Fund for Distinguished Young Scholars (31925036,32025034)+3 种基金the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (2019QNRC001)the National Natural Science Foundation of China (31801031)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030304)Lingnan Modern Agriculture Project (NT2021005)。
文摘Prime editing(PE)is a recent gene editing technology that can mediate insertions or deletions and all twelve types of base-tobase conversions.However,its low efficiency hampers the application in creating novel breeds and biomedical models,especially in pigs and other important farm animals.Here,we demonstrate that the pig genome is editable using the PE system,but the editing efficiency was quite low as expected.Therefore,we aimed to enhance PE efficiency by modulating both exogenous PE tools and endogenous pathways in porcine embryonic fibroblasts(PEFs).First,we modified the peg RNA by extending the duplex length and mutating the fourth thymine in a continuous sequence of thymine bases to cytosine,which significantly enhanced PE efficiency by improving the expression of peg RNA and targeted cleavage.Then,we targeted SAMHD1,a deoxynucleoside triphosphate triphosphohydrolase(d NTPase)that impedes the reverse transcription process in retroviruses,and found that treatment with its inhibitor,cephalosporin C zinc salt(CPC),increased PE efficiency up to 29-fold(4-fold on average),presumably by improving the reverse transcription process of Moloney murine leukemia virus reverse transcriptase(M-MLV RT)in the PE system.Moreover,PE efficiency was obviously improved by treatment with a panel of histone deacetylase inhibitors(HDACis).Among the four HDACis tested,panobinostat was the most efficient,with an efficiency up to 122-fold(7-fold on average),partly due to the considerable HDACi-mediated increase in transgene expression.In addition,the synergistic use of the three strategies further enhanced PE efficiency in PEFs.Our study provides novel approaches for optimization of the PE system and broadens the application scope of PE in agriculture and biomedicine.
基金National Natural Science Foundation of China(32072098)。
文摘Oil crops,mainly comprised of soybean,rapeseed,groundnut,sunflower and etc.,have provided substantial edible oil and other tremendous nutrients for human beings,as well as valuable biofuels for associated industries.The genetic improvement of significant oil crops and/or domesticating novel high-yielding oil crops are in urgent need to cope with the ever-increasing demand for various oil crop products.CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)-based genome editing technology,born a few years ago,edits stretches of DNA in a targeted and RNA-dependent fashion.The Characteristics of targeted mutagenesis and easy manipulation owned by the technology make it have been applied to many plants and exhibited great potential in the genetic improvement of many important oil crops.In the face of growing need for oil crop products and the rapid developments in CRISPR-based genome editing technology,a critical review regarding the technology and its application in oil crops is badly required to provide references for the better use of this technology to modify the oil crops for higher yield.In this review paper,we briefly described the CRISPR-based genome editing technology and summarized its applications and future prospects in oil crops.
基金supported by grants from the National Natural Science Foundation of China(grant nos.31872678 and U19A2022)。
文摘Low efficiency is the main obstacle to using prime editing in maize(Zea mays).Recently,prime-editing efficiency was greatly improved in mammalian cells and rice(Oryza sativa)plants by engineering primeediting guide RNAs(pegRNAs),optimizing the prime editor(PE)protein,and manipulating cellular determinants of prime editing.In this study,we tested PEs optimized via these three strategies in maize.We demonstrated that the ePE5max system,composed of PEmax,epegRNAs(pegRNA-evopreQ.1),nicking single guide RNAs(sgRNAs),and MLH1dn,efficiently generated heritable mutations that conferred resistance to herbicides that inhibit 5-enolpyruvylshikimate-3-phosphate synthase(EPSPS),acetolactate synthase(ALS),or acetyl CoA carboxylase(ACCase)activity.Collectively,we demonstrate that the ePE5max system has sufficient efficiency to generate heritable(homozygous or heterozygous)mutations in maize target genes and that the main obstacle to using PEs in maize has thus been removed.
基金supported by grants from the National Key Research and Development Program of China(2022YFF1002802)the National Natural Science Foundation of China(32170410)the Science and Technology Innovation Young Talent Team of Shanxi Province(202204051001019).
文摘Prime editing(PE)is a versatile genome editing tool without the need for double-stranded DNA breaks or donor DNA templates,but is limited by low editing efficiency.We previously fused the M-MLV reverse transcriptase to the Cas9 nickase,generating the PE2(v1)system,but the editing efficiency of this system is still low.Here we develop different versions of PE2 by adding the 50-to-30 exonuclease at different positions of the nCas9-M-MLV RT fusion protein.PE2(v2),in which the T5 exonuclease fused to the N-terminus of the nCas9-MMLV fusion protein enhances prime editing efficiency of base substitutions,deletions,and insertions at several genomic sites by 1.7-to 2.9-fold in plant cells compared to PE2(v1).The improved editing efficiency of PE2(v2)is further confirmed by generating increased heritable prime edits in stable transgenic plants compared to the previously established PE-P1,PE-P2,and PPE systems.Using PE2(v2),we generate herbicide-resistant rice by simultaneously introducing mutations causing amino acid substitutions at two target sites.The PE efficiency is further improved by combining PE2(v2)and dualpegRNAs.Taken together,the increased genome editing efficiency of PE2(v2)developed in this study may enhance the applications of PE in plants.
基金funded by the Genetically Modified Breeding Major Projects(no.2019ZX08010003-001-008 and no.2016ZX08010-002-008)the National Natural Science Foundation of China(no.U19A2022).
文摘Prime-editing systems have the capability to perform efficient and precise genome editing in human cells.In this study,we first developed a plant prime editor 2(pPE2)system and test its activity by generating a targeted mutation on an HPT^(-ATG) reporter in rice.Our results showed that the pPE2 system could induce programmable editing at different genome sites.In transgenic T0 plants,pPE2-generated mutants occurred with 0%–31.3%frequency,suggesting that the efficiency of pPE2 varied greatly at different genomic sites and with prime-editing guide RNAs of diverse structures.To optimize editing efficiency,guide RNAs were introduced into the pPE2 system following the PE3 and PE3b strategy in human cells.However,at the genomic sites tested in this study,pPE3 systems generated only comparable or even lower editing frequencies.Furthemore,we developed a surrogate pPE2 system by incorporating the HPT^(-ATG) reporter to enrich the prime-edited cells.The nucleotide editing was easily detected in the resistant calli transformed with the surrogate pPE2 system,presumably due to the enhanced screening efficiency of edited cells.Taken together,our results indicate that plant prime-editing systems we developed could provide versatile and flexible editing in rice genome.