Background Molecular testing is more precise compared to serology and has been widely used in genotyping blood group antigens. Single nucleotide polymorphisms (SNPs) of blood group antigens can be determined by the ...Background Molecular testing is more precise compared to serology and has been widely used in genotyping blood group antigens. Single nucleotide polymorphisms (SNPs) of blood group antigens can be determined by the polymerase chain reaction with sequence specific priming (PCR-SSP) assay. Commercial high-throughput platforms can be expensive and are not approved in China. The genotype frequencies of Kidd, Kell, Duffy, Scianna, and RhCE blood group antigens in Jiangsu province were unknown. The aim of this study is sought to detect the genotype frequencies of Kidd, Kell, Duffy, Scianna, and RhCE antigens in Jiangsu Chinese Hart using molecular methods with laboratory developed tests. Methods DNA was extracted from EDTA-anticoagulated blood samples of 146 voluntary blood donors collected randomly within one month. Standard serologic assay for red blood cell antigens were also performed except the Scianna blood group antigens. PCR-SSP was designed to work under one PCR program to identify the following SNPs: JK1/JK2, KEL 1/KEL2, FYA/FYB, SC1/SC2, C/c and E/e. Results Serologic antigen results were identical to the phenotypes that were predicted from genotyping results. The allele frequencies for Jk^*01 and Jk^*02 were 0.51 and 0.49, respectively; for Fy^*A and Fy^*B 0.94 and 0.06; for RHCE^*C and RHCE^*c 0.68 and 0.32; and for RHCE^*E and RHCE^*e 0.28 and 0.72. Among 146 blood donors, all were KEL^*02/ KEL^*02 and SC^*01/SC^*01, indicating allele frequencies for KEL^*02 and SC^*01 close to 1.00. Conclusions The use of PCR-SSP working under the same condition for testing multiple antigens at the same time is practical. This approach can be effective and cost-efficient for small-scale laboratories and in developing counties. These molecular tests can be also used for identifying rare blood types.展开更多
文摘Background Molecular testing is more precise compared to serology and has been widely used in genotyping blood group antigens. Single nucleotide polymorphisms (SNPs) of blood group antigens can be determined by the polymerase chain reaction with sequence specific priming (PCR-SSP) assay. Commercial high-throughput platforms can be expensive and are not approved in China. The genotype frequencies of Kidd, Kell, Duffy, Scianna, and RhCE blood group antigens in Jiangsu province were unknown. The aim of this study is sought to detect the genotype frequencies of Kidd, Kell, Duffy, Scianna, and RhCE antigens in Jiangsu Chinese Hart using molecular methods with laboratory developed tests. Methods DNA was extracted from EDTA-anticoagulated blood samples of 146 voluntary blood donors collected randomly within one month. Standard serologic assay for red blood cell antigens were also performed except the Scianna blood group antigens. PCR-SSP was designed to work under one PCR program to identify the following SNPs: JK1/JK2, KEL 1/KEL2, FYA/FYB, SC1/SC2, C/c and E/e. Results Serologic antigen results were identical to the phenotypes that were predicted from genotyping results. The allele frequencies for Jk^*01 and Jk^*02 were 0.51 and 0.49, respectively; for Fy^*A and Fy^*B 0.94 and 0.06; for RHCE^*C and RHCE^*c 0.68 and 0.32; and for RHCE^*E and RHCE^*e 0.28 and 0.72. Among 146 blood donors, all were KEL^*02/ KEL^*02 and SC^*01/SC^*01, indicating allele frequencies for KEL^*02 and SC^*01 close to 1.00. Conclusions The use of PCR-SSP working under the same condition for testing multiple antigens at the same time is practical. This approach can be effective and cost-efficient for small-scale laboratories and in developing counties. These molecular tests can be also used for identifying rare blood types.