Let Z/(p^e) be the integer residue ring modulo p^e with p an odd prime and integer e ≥ 3. For a sequence a over Z/(p^e), there is a unique p-adic decomposition a- = a-0 +a-1 .p +… + a-e-l .p^e-1 where each a-...Let Z/(p^e) be the integer residue ring modulo p^e with p an odd prime and integer e ≥ 3. For a sequence a over Z/(p^e), there is a unique p-adic decomposition a- = a-0 +a-1 .p +… + a-e-l .p^e-1 where each a-i can be regarded as a sequence over Z/(p), 0 ≤ i ≤ e - 1. Let f(x) be a primitive polynomial over Z/(p^e) and G'(f(x),p^e) the set of all primitive sequences generated by f(x) over Z/(p^e). For μ(x) ∈ Z/(p)[x] with deg(μ(x)) ≥ 2 and gad(1 + deg(μ(x)),p- 1) = 1, setφe-1 (x0, x1,… , xe-1) = xe-1. [μ(xe-2) + ηe-3(x0, X1,…, xe-3)] + ηe-2(x0, X1,…, xe-2) which is a function of e variables over Z/(p). Then the compressing mapφe-1 : G'(f(x),p^e) → (Z/(p))^∞ ,a-→φe-1(a-0,a-1, … ,a-e-1) is injective. That is, for a-,b-∈ G'(f(x),p^e), a- = b- if and only if φe-1 (a-0,a-1, … ,a-e-1) = φe-1(b-0, b-1,… ,b-e-1). As for the case of e = 2, similar result is also given. Furthermore, if functions φe-1 and ψe-1 over Z/(p) are both of the above form and satisfy φe-1(a-0,a-1,…,a-e-1)=ψe-1(b-0, b-1,… ,b-e-1) for a-,b-∈G'(f(x),p^e), the relations between a- and b-, φe-1 and ψe-1 are discussed展开更多
Using the estimates of character sums over Galoi8 rings and the trace de-scription of primitive sequences over Z_(p^e), we obtain an estimate for the frequency of theoccurrences of any element in Z_(p^e) in one period...Using the estimates of character sums over Galoi8 rings and the trace de-scription of primitive sequences over Z_(p^e), we obtain an estimate for the frequency of theoccurrences of any element in Z_(p^e) in one period of a primitive sequence, which is betterthan Kuzmin's results if n >4e, where n is the degree of the generating polynomial ofthe primitive sequence.展开更多
In this paper, we discuss the 0, 1 distribution in the highest level sequence ae-1 of primitive sequence over Z2e generated by a primitive polynomial of degree n. First we get an estimate of the 0, 1 distribution by u...In this paper, we discuss the 0, 1 distribution in the highest level sequence ae-1 of primitive sequence over Z2e generated by a primitive polynomial of degree n. First we get an estimate of the 0, 1 distribution by using the estimates of exponential sums over Galois rings, which is tight for e relatively small to n. We also get an estimate which is suitable for e relatively large to n. Combining the two bounds, we obtain an estimate depending only on n, which shows that the larger n is, the closer to 1/2 the proportion of 1 will be.展开更多
In this paper, a multiplicity-preserving triangular set decomposition algorithm is proposed for a system of two polynomials, which involves only computing the primitive polynomial remainder sequence of two polynomials...In this paper, a multiplicity-preserving triangular set decomposition algorithm is proposed for a system of two polynomials, which involves only computing the primitive polynomial remainder sequence of two polynomials once and certain GCD computations. The algorithm decomposes the unmixed variety defined by two polynomials into square free and disjoint (for non-vertical components, see Definition 4) algebraic cycles represented by triangular sets which may have negative multiplicities. Thus, the authors can count the multiplicities of the non-vertical components. In the bivariate case, the amthors give a complete algorithm to decompose tile system into zeros represented by triangular sets with multiplicities. The authors also analyze the complexity of the algorithm in the bivariate ease. The authors implement the algorithm and show the effectiveness of the method with extensive experiments.展开更多
基金Supported by the National Natural Science Foundation of China(60673081)863 Program(2006AA01Z417)
文摘Let Z/(p^e) be the integer residue ring modulo p^e with p an odd prime and integer e ≥ 3. For a sequence a over Z/(p^e), there is a unique p-adic decomposition a- = a-0 +a-1 .p +… + a-e-l .p^e-1 where each a-i can be regarded as a sequence over Z/(p), 0 ≤ i ≤ e - 1. Let f(x) be a primitive polynomial over Z/(p^e) and G'(f(x),p^e) the set of all primitive sequences generated by f(x) over Z/(p^e). For μ(x) ∈ Z/(p)[x] with deg(μ(x)) ≥ 2 and gad(1 + deg(μ(x)),p- 1) = 1, setφe-1 (x0, x1,… , xe-1) = xe-1. [μ(xe-2) + ηe-3(x0, X1,…, xe-3)] + ηe-2(x0, X1,…, xe-2) which is a function of e variables over Z/(p). Then the compressing mapφe-1 : G'(f(x),p^e) → (Z/(p))^∞ ,a-→φe-1(a-0,a-1, … ,a-e-1) is injective. That is, for a-,b-∈ G'(f(x),p^e), a- = b- if and only if φe-1 (a-0,a-1, … ,a-e-1) = φe-1(b-0, b-1,… ,b-e-1). As for the case of e = 2, similar result is also given. Furthermore, if functions φe-1 and ψe-1 over Z/(p) are both of the above form and satisfy φe-1(a-0,a-1,…,a-e-1)=ψe-1(b-0, b-1,… ,b-e-1) for a-,b-∈G'(f(x),p^e), the relations between a- and b-, φe-1 and ψe-1 are discussed
文摘Using the estimates of character sums over Galoi8 rings and the trace de-scription of primitive sequences over Z_(p^e), we obtain an estimate for the frequency of theoccurrences of any element in Z_(p^e) in one period of a primitive sequence, which is betterthan Kuzmin's results if n >4e, where n is the degree of the generating polynomial ofthe primitive sequence.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.19971096,90104035).
文摘In this paper, we discuss the 0, 1 distribution in the highest level sequence ae-1 of primitive sequence over Z2e generated by a primitive polynomial of degree n. First we get an estimate of the 0, 1 distribution by using the estimates of exponential sums over Galois rings, which is tight for e relatively small to n. We also get an estimate which is suitable for e relatively large to n. Combining the two bounds, we obtain an estimate depending only on n, which shows that the larger n is, the closer to 1/2 the proportion of 1 will be.
基金partially supported by NKBRPC under Grant No.2011CB302400the National Natural Science Foundation of China under Grant Nos.11001258,60821002,91118001+1 种基金SRF for ROCS,SEMChina-France cooperation project EXACTA under Grant No.60911130369
文摘In this paper, a multiplicity-preserving triangular set decomposition algorithm is proposed for a system of two polynomials, which involves only computing the primitive polynomial remainder sequence of two polynomials once and certain GCD computations. The algorithm decomposes the unmixed variety defined by two polynomials into square free and disjoint (for non-vertical components, see Definition 4) algebraic cycles represented by triangular sets which may have negative multiplicities. Thus, the authors can count the multiplicities of the non-vertical components. In the bivariate case, the amthors give a complete algorithm to decompose tile system into zeros represented by triangular sets with multiplicities. The authors also analyze the complexity of the algorithm in the bivariate ease. The authors implement the algorithm and show the effectiveness of the method with extensive experiments.