Principal component transformation is a standard technique for multi-dimensional data analysis. The purpose of the present article is to elucidate the procedure for interpreting PC images. The discussion focuses on lo...Principal component transformation is a standard technique for multi-dimensional data analysis. The purpose of the present article is to elucidate the procedure for interpreting PC images. The discussion focuses on logically explaining how the negative/positive PC eigenvectors (loadings) in combination with strong reflection/absorption spectral behavior at different pixels affect the DN values in the output PC images. It is an explanatory article so that fuller potential of the PCT applications can be realized.展开更多
This paper introduces a new enhancement method for multi-spectral satellite remote sensing imagery,based on principal component analysis(PCA) and intensity-hue-saturation(IHS) transformations.The PCA and the IHS trans...This paper introduces a new enhancement method for multi-spectral satellite remote sensing imagery,based on principal component analysis(PCA) and intensity-hue-saturation(IHS) transformations.The PCA and the IHS transformations are used to separate the spatial information of the multi-spectral image into the first principal component and the intensity component,respectively.The enhanced image is obtained by replacing the intensity component of the IHS transformation with the first principal component of the PCA transformation,and undertaking the inverse IHS transformation.The objective of the proposed method is to make greater use of the spatial and spectral information contained in the original multi-spectral image.On the basis of the visual and statistical analysis results of the experimental study,we can conclude that the proposed method is an ideal new way for multi-spectral image quality enhancement with little color distortion.It has potential advantages in image mapping optimization,object recognition,and weak information sharpening.展开更多
文摘Principal component transformation is a standard technique for multi-dimensional data analysis. The purpose of the present article is to elucidate the procedure for interpreting PC images. The discussion focuses on logically explaining how the negative/positive PC eigenvectors (loadings) in combination with strong reflection/absorption spectral behavior at different pixels affect the DN values in the output PC images. It is an explanatory article so that fuller potential of the PCT applications can be realized.
文摘This paper introduces a new enhancement method for multi-spectral satellite remote sensing imagery,based on principal component analysis(PCA) and intensity-hue-saturation(IHS) transformations.The PCA and the IHS transformations are used to separate the spatial information of the multi-spectral image into the first principal component and the intensity component,respectively.The enhanced image is obtained by replacing the intensity component of the IHS transformation with the first principal component of the PCA transformation,and undertaking the inverse IHS transformation.The objective of the proposed method is to make greater use of the spatial and spectral information contained in the original multi-spectral image.On the basis of the visual and statistical analysis results of the experimental study,we can conclude that the proposed method is an ideal new way for multi-spectral image quality enhancement with little color distortion.It has potential advantages in image mapping optimization,object recognition,and weak information sharpening.
基金National Natural Science Foundation of China(No.61862038)Gansu Province Science and Technology Program(No.20JR10RA213)+1 种基金Gansu Province Science and Technology Program-Innovation Fund for Small and Medium-sized Enterprises(No.21CX6JA150)Foundation of a Hundred Youth Talents Training Program of Lanzhou Jiaotong University。