To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with ...To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.展开更多
In order to carry out tensor analysis in a neighborhood of a reference surface,the principal-direction orthogonal basis accompanying with Lame s coefficients or general curvilinear coordinate systems are widely used.A...In order to carry out tensor analysis in a neighborhood of a reference surface,the principal-direction orthogonal basis accompanying with Lame s coefficients or general curvilinear coordinate systems are widely used.A novel kind of field theory termed as the nonholonomic theory of the Principal-Direction Orthonormal Basis(PDOB)is presented systematically in the present paper,in which the formal Christoffel symbols are related directly to the principal and geodesic curvatures with respect to the principal directions of the surface.Furthermore,a systematic and simple way to determine the curvatures of the surface are presented with some examples.It provides a way to recognize qualitatively the bending property of a surface.展开更多
Using the Raychaudhuri equation, we associate quantum probability amplitudes (propagators) to equatorial principal ingoing and outgoing null geodesic congruences in the Kerr metric. The expansion scalars diverge at th...Using the Raychaudhuri equation, we associate quantum probability amplitudes (propagators) to equatorial principal ingoing and outgoing null geodesic congruences in the Kerr metric. The expansion scalars diverge at the ring singularity;however, the propagators remain finite, which is an indication that at the quantum level singularities might disappear or, at least, become softened.展开更多
Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe...Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines.展开更多
We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were use...We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response.展开更多
During the construction and operation of gas storage reservoirs,changes in the principal stress direction can induce fracture propagation under conditions of lower differential stress,potentially leading to failure in...During the construction and operation of gas storage reservoirs,changes in the principal stress direction can induce fracture propagation under conditions of lower differential stress,potentially leading to failure in the surrounding rock.However,the weakening of strength due to pure stress rotation has not yet been investigated.Based on fracture mechanics,an enhanced Mohr-Coulomb strength criterion considering stress rotation is proposed and verified with experimental and numerical simulations.The micro-damage state and the evolution of the rock under the pure stress-rotation condition are analyzed.The findings indicate that differential stress exceeding the crack initiation stress is a prerequisite for stress rotation to promote the development of rock damage.As the differential stress increases,stress rotation is more likely to induce rock damage,leading to a transition from brittle to plastic failure,characterized by wider fractures and a more complex fracture network.Overall,a negative exponential relationship exists between the stress rotation angle required for rock failure and the differential stress.The feasibility of applying the enhanced criterion to practical engineering is discussed using monitoring data obtained from a mine-by tunnel.This study introduces new concepts for understanding the damage evolution of the surrounding rock under complex stress paths and offers a new theoretical basis for predicting the damage of gas storage reservoirs.展开更多
Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Anal...Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements.展开更多
The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scatt...The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state.展开更多
Based on the keynote report by Professor Martin Thrupp,this paper discusses the hollowing out of education provision by the state and the permeation of managerialism.It was pointed out that principals and boards of tr...Based on the keynote report by Professor Martin Thrupp,this paper discusses the hollowing out of education provision by the state and the permeation of managerialism.It was pointed out that principals and boards of trustees in socioeconomically advantaged areas may not be willing to share their benefits with schools in less advantaged areas.The new liberal policies have hollowed out state provision of education,so the education system has come to rely heavily on private actors.This paper also presents the current stage of privatization in Japan and the principals’and teachers’perceptions of privatization.展开更多
This paper investigates the design essence of Chinese classical private gardens,integrating their design elements and fundamental principles.It systematically analyzes the unique characteristics and differences among ...This paper investigates the design essence of Chinese classical private gardens,integrating their design elements and fundamental principles.It systematically analyzes the unique characteristics and differences among classical private gardens in the Northern,Jiangnan,and Lingnan regions.The study examines nine classical private gardens from Northern China,Jiangnan,and Lingnan by utilizing the advanced tool of principal component cluster analysis.Based on literature analysis and field research,273 variables were selected for principal component analysis,from which four components with higher contribution rates were chosen for further study.Subsequently,we employed clustering analysis techniques to compare the differences among the three types of gardens.The results reveal that the first principal component effectively highlights the differences between Jiangnan and Lingnan private gardens.The second principal component serves as the key to defining the types of Northern private gardens and distinguishing them from the other two types,and the third principal component indicates that Lingnan private gardens can be categorized into two distinct types as well.展开更多
In this research,the performance of regular rapeseed oil(RSO)and modified low-linolenic rapeseed oil(LLRO)during frying was assessed using a frying procedure that commonly found in fast-food restaurants.Key physicoche...In this research,the performance of regular rapeseed oil(RSO)and modified low-linolenic rapeseed oil(LLRO)during frying was assessed using a frying procedure that commonly found in fast-food restaurants.Key physicochemical attributes of these oils were investigated.RSO and LLRO differed for initial linolenic acid(12.21%vs.2.59%),linoleic acid(19.15%vs.24.73%).After 6 successive days frying period of French fries,the ratio of linoleic acid to palmitic acid dropped by 54.49%in RSO,higher than that in LLRO(51.54%).The increment in total oxidation value for LLRO(40.46 unit)was observed to be significantly lower than those of RSO(42.58 unit).The changes in carbonyl group value and iodine value throughout the frying trial were also lower in LLRO compared to RSO.The formation rate in total polar compounds for LLRO was 1.08%per frying day,lower than that of RSO(1.31%).In addition,the formation in color component and degradation in tocopherols were proportional to the frying time for two frying oils.Besides,a longer induction period was also observed in LLRO(8.87 h)compared to RSO(7.68 h)after frying period.Overall,LLRO exhibited the better frying stability,which was confirmed by principal component analysis(PCA).展开更多
The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and healthcare.To address the limitations im...The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and healthcare.To address the limitations imposed by inadequate resources,energy,and network scalability,this type of network relies heavily on data aggregation and clustering algorithms.Although various conventional studies have aimed to enhance the lifespan of a network through robust systems,they do not always provide optimal efficiency for real-time applications.This paper presents an approach based on state-of-the-art machine-learning methods.In this study,we employed a novel approach that combines an extended version of principal component analysis(PCA)and a reinforcement learning algorithm to achieve efficient clustering and data reduction.The primary objectives of this study are to enhance the service life of a network,reduce energy usage,and improve data aggregation efficiency.We evaluated the proposed methodology using data collected from sensors deployed in agricultural fields for crop monitoring.Our proposed approach(PQL)was compared to previous studies that utilized adaptive Q-learning(AQL)and regional energy-aware clustering(REAC).Our study outperformed in terms of both network longevity and energy consumption and established a fault-tolerant network.展开更多
[Objective] This study aimed to explore the related mechanisms of the breaking of flue-cured tobacco leaves. [Method] Anti-breaking models of the main veins of flue-cured tobacco leaves were constructed for principal ...[Objective] This study aimed to explore the related mechanisms of the breaking of flue-cured tobacco leaves. [Method] Anti-breaking models of the main veins of flue-cured tobacco leaves were constructed for principal component analysis on the anti-breaking index, leaf traits and cellulose contents. [Result] The results showed that the growth traits had certain relevance with the cellulose contents while the leaf weight assumed a significant negative correlation with the anti-breaking index, indicating that the heavier the leaf weight was, the weaker the anti-breaking capacity of flue-cured tobacco would be; the cross-sectional area of main veins and the cellulose contents had shown a positive correlation with the anti-breaking index, indicating that the thicker the main vein of flue-cured tobacco was, the higher the cellulose contents would be, and the stronger the anti-breaking capacity of flue-cured tobacco leaves would be. [Conclusion] This study provided theoretical basis and reference to improve tobacco production and enhance the quality of flue-cured tobacco.展开更多
In order to define the relationship between yield and important agronomic traits of two lines hybrid Uangyou 2111, the principal component analysis method was used to analyze the expadmental data of six test points in...In order to define the relationship between yield and important agronomic traits of two lines hybrid Uangyou 2111, the principal component analysis method was used to analyze the expadmental data of six test points in Yunnan Province. The results showed that the main factors influencing the production of Liangyou 2111 were grain number, grains seed number, panicle length, growth padod and panicle rate; then were 1 O00-grain weight, seed setting rate, effective panicle and highest stem tillers number; again was plant height. Therefore, when hybrid rice of Uangyou 2111 will be planted widely in yunnan province, we should focus on en- sudng the panicle traits, especially increase grain number and grain seed number, and coordinately develop other traits to achieve high yield.展开更多
In principal component analysis (PCA) algorithms for face recognition, to reduce the influence of the eigenvectors which relate to the changes of the illumination on abstract features, a modified PCA (MPCA) algori...In principal component analysis (PCA) algorithms for face recognition, to reduce the influence of the eigenvectors which relate to the changes of the illumination on abstract features, a modified PCA (MPCA) algorithm is proposed. The method is based on the idea of reducing the influence of the eigenvectors associated with the large eigenvalues by normalizing the feature vector element by its corresponding standard deviation. The Yale face database and Yale face database B are used to verify the method. The simulation results show that, for front face and even under the condition of limited variation in the facial poses, the proposed method results in better performance than the conventional PCA and linear discriminant analysis (LDA) approaches, and the computational cost remains the same as that of the PCA, and much less than that of the LDA.展开更多
[Objective] This study was conducted to provide certain theoretical reference for the comprehensive evaluation and breeding of new fresh waxy corn vari- eties. [Method] With 5 good fresh waxy corn varieties as experim...[Objective] This study was conducted to provide certain theoretical reference for the comprehensive evaluation and breeding of new fresh waxy corn vari- eties. [Method] With 5 good fresh waxy corn varieties as experimental materials, correlation analysis and principal component anatysis were performed on 13 agronomic traits, i.e., plant height, ear position, ear weight, ear diameter, axis diameter, ear length, bald tip length, ear row number, number of grains per row, 100-kernel weight, fresh ear yield, tassel length, and tassel branch number. [Result] The principal component analysis performed to the 13 agronomic traits showed that the first three principal components, i.e., the fresh ear yield factors, the tassel factors and the bald top factors, had an accumulative contribution rate over 87.2767%, and could basically represent the genetic information represented by the 13 traits. The first principal component is the main index for the selection and evaluation of good corn varieties which should have large ear, large ear diameter but small axis diameter, i.e., longer grains, larger number of grains per ear, higher, 100-grain weight and higher plant height. As to the second principal component, the plants of fresh corn varieties are best to have longer tassel and not too many branches, and under the premise of ensuring enough pollen for the female spike, the varieties with fewer tassel branches shoud be selected as far as possible. From the point of the third principal component, bald tip length affects the marketing quality of fresh corn, and during fariety evaluation and breeding, the bald top length should be control at the Iowest standard. [Conclusion] The fresh ear yield of corn is in close positive correlation with ear weight, 100-grain weight, ear diameter, number of grains per row and ear length, and plant height also affects fresh ear yield.展开更多
[ Objective] Aiming at problems of early warning for occurrence of rice pests and dynamic monitoring of rice planthopper in field, a detection model for rice planthopper populations was established based on PCR with s...[ Objective] Aiming at problems of early warning for occurrence of rice pests and dynamic monitoring of rice planthopper in field, a detection model for rice planthopper populations was established based on PCR with spectrum detection technology, r Method] Canopy reflectance data were collected using FieldSpeo 3 spectrometer in paddy field, and rice planthoppers populations in hundred hills were detected simultaneously. The sample size was 71, and there were 51 samples in the calibration set and 20 samples in the prediction set. Modeling band was 350 -1 139 nm, and the original spectra were pretreated by first order differential. [ Result] The correlation coefficient of measured values and predictive values was 0. 78, and the RMSEP was 161. [ Conlmion] Spectrum detection was able to be used in investigation and forecasting of rice planthoppere.展开更多
In order to solve principal-agent problems caused by interest inconformity and information asymmetry during information security outsourcing, it is necessary to design a reasonable incentive mechanism to promote clien...In order to solve principal-agent problems caused by interest inconformity and information asymmetry during information security outsourcing, it is necessary to design a reasonable incentive mechanism to promote client enterprises to complete outsourcing service actively. The incentive mechanism model of information security outsourcing is designed based on the principal-agent theory. Through analyzing the factors such as enterprise information assets value, invasion probability, information security environment, the agent cost coefficient and agency risk preference degree how to impact on the incentive mechanism, conclusions show that an enterprise information assets value and invasion probability have a positive influence on the fixed fee and the compensation coefficient; while information security environment, the agent cost coefficient and agency risk preference degree have a negative influence on the compensation coefficient. Therefore, the principal enterprises should reasonably design the fixed fee and the compensation coefficient to encourage information security outsourcing agency enterprises to the full extent.展开更多
In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonne...In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonnegative constrained principal component analysis method is proposed to construct a low-dimensional multi-spectral space and accomplish the conversion between the new constructed space and the multispectral space. First, the reason behind the negative data is analyzed and a nonnegative constraint is imposed on the classic PCA. Then a set of nonnegative linear independence weight vectors of principal components is obtained, by which a lowdimensional space is constructed. Finally, a nonlinear optimization technique is used to determine the projection vectors of the high-dimensional multi-spectral data in the constructed space. Experimental results show that the proposed method can keep the reconstructed spectral data in [ 0, 1 ]. The precision of the space created by the proposed method is equivalent to or even higher than that by the PCA.展开更多
The evaluation model was established to estimate the number of houses collapsed during typhoon disaster for Zhejiang Province.The factor leading to disaster,the environment fostering disaster and the exposure of build...The evaluation model was established to estimate the number of houses collapsed during typhoon disaster for Zhejiang Province.The factor leading to disaster,the environment fostering disaster and the exposure of buildings were processed by Principal Component Analysis.The key factor was extracted to support input of vector machine model and to build an evaluation model;the historical fitting result kept in line with the fact.In the real evaluation of two typhoons landed in Zhejiang Province in 2008 and 2009,the coincidence of evaluating result and actual value proved the feasibility of this model.展开更多
基金the financial support from the National Natural Science Foundation of China(Grant No.51839003)Liaoning Revitalization Talents Program(Grant No.XLYCYSZX 1902)Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources(Grant No.2023zy002).
文摘To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.
基金Project supported by the National Natural Science Foundation of China(11972120,11472082,12032016)。
文摘In order to carry out tensor analysis in a neighborhood of a reference surface,the principal-direction orthogonal basis accompanying with Lame s coefficients or general curvilinear coordinate systems are widely used.A novel kind of field theory termed as the nonholonomic theory of the Principal-Direction Orthonormal Basis(PDOB)is presented systematically in the present paper,in which the formal Christoffel symbols are related directly to the principal and geodesic curvatures with respect to the principal directions of the surface.Furthermore,a systematic and simple way to determine the curvatures of the surface are presented with some examples.It provides a way to recognize qualitatively the bending property of a surface.
文摘Using the Raychaudhuri equation, we associate quantum probability amplitudes (propagators) to equatorial principal ingoing and outgoing null geodesic congruences in the Kerr metric. The expansion scalars diverge at the ring singularity;however, the propagators remain finite, which is an indication that at the quantum level singularities might disappear or, at least, become softened.
基金This work was supported by the Pilot Seed Grant(Grant No.RES0049944)the Collaborative Research Project(Grant No.RES0043251)from the University of Alberta.
文摘Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines.
文摘We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response.
文摘During the construction and operation of gas storage reservoirs,changes in the principal stress direction can induce fracture propagation under conditions of lower differential stress,potentially leading to failure in the surrounding rock.However,the weakening of strength due to pure stress rotation has not yet been investigated.Based on fracture mechanics,an enhanced Mohr-Coulomb strength criterion considering stress rotation is proposed and verified with experimental and numerical simulations.The micro-damage state and the evolution of the rock under the pure stress-rotation condition are analyzed.The findings indicate that differential stress exceeding the crack initiation stress is a prerequisite for stress rotation to promote the development of rock damage.As the differential stress increases,stress rotation is more likely to induce rock damage,leading to a transition from brittle to plastic failure,characterized by wider fractures and a more complex fracture network.Overall,a negative exponential relationship exists between the stress rotation angle required for rock failure and the differential stress.The feasibility of applying the enhanced criterion to practical engineering is discussed using monitoring data obtained from a mine-by tunnel.This study introduces new concepts for understanding the damage evolution of the surrounding rock under complex stress paths and offers a new theoretical basis for predicting the damage of gas storage reservoirs.
文摘Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements.
基金supported by the National Key Research and Development Program of China(No.2018YFA0702800)the National Natural Science Foundation of China(No.12072056)supported by National Defense Fundamental Scientific Research Project(XXXX2018204BXXX).
文摘The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state.
文摘Based on the keynote report by Professor Martin Thrupp,this paper discusses the hollowing out of education provision by the state and the permeation of managerialism.It was pointed out that principals and boards of trustees in socioeconomically advantaged areas may not be willing to share their benefits with schools in less advantaged areas.The new liberal policies have hollowed out state provision of education,so the education system has come to rely heavily on private actors.This paper also presents the current stage of privatization in Japan and the principals’and teachers’perceptions of privatization.
文摘This paper investigates the design essence of Chinese classical private gardens,integrating their design elements and fundamental principles.It systematically analyzes the unique characteristics and differences among classical private gardens in the Northern,Jiangnan,and Lingnan regions.The study examines nine classical private gardens from Northern China,Jiangnan,and Lingnan by utilizing the advanced tool of principal component cluster analysis.Based on literature analysis and field research,273 variables were selected for principal component analysis,from which four components with higher contribution rates were chosen for further study.Subsequently,we employed clustering analysis techniques to compare the differences among the three types of gardens.The results reveal that the first principal component effectively highlights the differences between Jiangnan and Lingnan private gardens.The second principal component serves as the key to defining the types of Northern private gardens and distinguishing them from the other two types,and the third principal component indicates that Lingnan private gardens can be categorized into two distinct types as well.
基金This work was financially supported by the Science and Technology Research Project of Jiangxi Provincial Education Department(GJJ210322)the National Natural Science Foundation of China(No.32260635).
文摘In this research,the performance of regular rapeseed oil(RSO)and modified low-linolenic rapeseed oil(LLRO)during frying was assessed using a frying procedure that commonly found in fast-food restaurants.Key physicochemical attributes of these oils were investigated.RSO and LLRO differed for initial linolenic acid(12.21%vs.2.59%),linoleic acid(19.15%vs.24.73%).After 6 successive days frying period of French fries,the ratio of linoleic acid to palmitic acid dropped by 54.49%in RSO,higher than that in LLRO(51.54%).The increment in total oxidation value for LLRO(40.46 unit)was observed to be significantly lower than those of RSO(42.58 unit).The changes in carbonyl group value and iodine value throughout the frying trial were also lower in LLRO compared to RSO.The formation rate in total polar compounds for LLRO was 1.08%per frying day,lower than that of RSO(1.31%).In addition,the formation in color component and degradation in tocopherols were proportional to the frying time for two frying oils.Besides,a longer induction period was also observed in LLRO(8.87 h)compared to RSO(7.68 h)after frying period.Overall,LLRO exhibited the better frying stability,which was confirmed by principal component analysis(PCA).
文摘The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and healthcare.To address the limitations imposed by inadequate resources,energy,and network scalability,this type of network relies heavily on data aggregation and clustering algorithms.Although various conventional studies have aimed to enhance the lifespan of a network through robust systems,they do not always provide optimal efficiency for real-time applications.This paper presents an approach based on state-of-the-art machine-learning methods.In this study,we employed a novel approach that combines an extended version of principal component analysis(PCA)and a reinforcement learning algorithm to achieve efficient clustering and data reduction.The primary objectives of this study are to enhance the service life of a network,reduce energy usage,and improve data aggregation efficiency.We evaluated the proposed methodology using data collected from sensors deployed in agricultural fields for crop monitoring.Our proposed approach(PQL)was compared to previous studies that utilized adaptive Q-learning(AQL)and regional energy-aware clustering(REAC).Our study outperformed in terms of both network longevity and energy consumption and established a fault-tolerant network.
基金Supported by the Fund of Anhui Provincial Tobacco Monopoly Bureau(AHKJ2008-03)Anhui Provincial University Key Project of Natural Science(KJ2010A114)Undergraduate Student Science and Technology Innovation Fund of Anhui Agricultural University(2010233)~~
文摘[Objective] This study aimed to explore the related mechanisms of the breaking of flue-cured tobacco leaves. [Method] Anti-breaking models of the main veins of flue-cured tobacco leaves were constructed for principal component analysis on the anti-breaking index, leaf traits and cellulose contents. [Result] The results showed that the growth traits had certain relevance with the cellulose contents while the leaf weight assumed a significant negative correlation with the anti-breaking index, indicating that the heavier the leaf weight was, the weaker the anti-breaking capacity of flue-cured tobacco would be; the cross-sectional area of main veins and the cellulose contents had shown a positive correlation with the anti-breaking index, indicating that the thicker the main vein of flue-cured tobacco was, the higher the cellulose contents would be, and the stronger the anti-breaking capacity of flue-cured tobacco leaves would be. [Conclusion] This study provided theoretical basis and reference to improve tobacco production and enhance the quality of flue-cured tobacco.
基金Supported by Yunnan Agricultural Development BureauYunnan Modern Agricultural Rice Industry Technology System~~
文摘In order to define the relationship between yield and important agronomic traits of two lines hybrid Uangyou 2111, the principal component analysis method was used to analyze the expadmental data of six test points in Yunnan Province. The results showed that the main factors influencing the production of Liangyou 2111 were grain number, grains seed number, panicle length, growth padod and panicle rate; then were 1 O00-grain weight, seed setting rate, effective panicle and highest stem tillers number; again was plant height. Therefore, when hybrid rice of Uangyou 2111 will be planted widely in yunnan province, we should focus on en- sudng the panicle traits, especially increase grain number and grain seed number, and coordinately develop other traits to achieve high yield.
文摘In principal component analysis (PCA) algorithms for face recognition, to reduce the influence of the eigenvectors which relate to the changes of the illumination on abstract features, a modified PCA (MPCA) algorithm is proposed. The method is based on the idea of reducing the influence of the eigenvectors associated with the large eigenvalues by normalizing the feature vector element by its corresponding standard deviation. The Yale face database and Yale face database B are used to verify the method. The simulation results show that, for front face and even under the condition of limited variation in the facial poses, the proposed method results in better performance than the conventional PCA and linear discriminant analysis (LDA) approaches, and the computational cost remains the same as that of the PCA, and much less than that of the LDA.
文摘[Objective] This study was conducted to provide certain theoretical reference for the comprehensive evaluation and breeding of new fresh waxy corn vari- eties. [Method] With 5 good fresh waxy corn varieties as experimental materials, correlation analysis and principal component anatysis were performed on 13 agronomic traits, i.e., plant height, ear position, ear weight, ear diameter, axis diameter, ear length, bald tip length, ear row number, number of grains per row, 100-kernel weight, fresh ear yield, tassel length, and tassel branch number. [Result] The principal component analysis performed to the 13 agronomic traits showed that the first three principal components, i.e., the fresh ear yield factors, the tassel factors and the bald top factors, had an accumulative contribution rate over 87.2767%, and could basically represent the genetic information represented by the 13 traits. The first principal component is the main index for the selection and evaluation of good corn varieties which should have large ear, large ear diameter but small axis diameter, i.e., longer grains, larger number of grains per ear, higher, 100-grain weight and higher plant height. As to the second principal component, the plants of fresh corn varieties are best to have longer tassel and not too many branches, and under the premise of ensuring enough pollen for the female spike, the varieties with fewer tassel branches shoud be selected as far as possible. From the point of the third principal component, bald tip length affects the marketing quality of fresh corn, and during fariety evaluation and breeding, the bald top length should be control at the Iowest standard. [Conclusion] The fresh ear yield of corn is in close positive correlation with ear weight, 100-grain weight, ear diameter, number of grains per row and ear length, and plant height also affects fresh ear yield.
基金Supported by Open Fund Project in Key Laboratory of Modern Agricultural Equipment and Technology,Ministry of Education Key Laboratory of Jiangsu Province(NZ200803)~~
文摘[ Objective] Aiming at problems of early warning for occurrence of rice pests and dynamic monitoring of rice planthopper in field, a detection model for rice planthopper populations was established based on PCR with spectrum detection technology, r Method] Canopy reflectance data were collected using FieldSpeo 3 spectrometer in paddy field, and rice planthoppers populations in hundred hills were detected simultaneously. The sample size was 71, and there were 51 samples in the calibration set and 20 samples in the prediction set. Modeling band was 350 -1 139 nm, and the original spectra were pretreated by first order differential. [ Result] The correlation coefficient of measured values and predictive values was 0. 78, and the RMSEP was 161. [ Conlmion] Spectrum detection was able to be used in investigation and forecasting of rice planthoppere.
基金The National Natural Science Foundation of China(No.71071033)the Youth Foundation of Humanity and Social Scienceof Ministry of Education of China(No.11YJC630234)
文摘In order to solve principal-agent problems caused by interest inconformity and information asymmetry during information security outsourcing, it is necessary to design a reasonable incentive mechanism to promote client enterprises to complete outsourcing service actively. The incentive mechanism model of information security outsourcing is designed based on the principal-agent theory. Through analyzing the factors such as enterprise information assets value, invasion probability, information security environment, the agent cost coefficient and agency risk preference degree how to impact on the incentive mechanism, conclusions show that an enterprise information assets value and invasion probability have a positive influence on the fixed fee and the compensation coefficient; while information security environment, the agent cost coefficient and agency risk preference degree have a negative influence on the compensation coefficient. Therefore, the principal enterprises should reasonably design the fixed fee and the compensation coefficient to encourage information security outsourcing agency enterprises to the full extent.
基金The Pre-Research Foundation of National Ministries andCommissions (No9140A16050109DZ01)the Scientific Research Program of the Education Department of Shanxi Province (No09JK701)
文摘In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonnegative constrained principal component analysis method is proposed to construct a low-dimensional multi-spectral space and accomplish the conversion between the new constructed space and the multispectral space. First, the reason behind the negative data is analyzed and a nonnegative constraint is imposed on the classic PCA. Then a set of nonnegative linear independence weight vectors of principal components is obtained, by which a lowdimensional space is constructed. Finally, a nonlinear optimization technique is used to determine the projection vectors of the high-dimensional multi-spectral data in the constructed space. Experimental results show that the proposed method can keep the reconstructed spectral data in [ 0, 1 ]. The precision of the space created by the proposed method is equivalent to or even higher than that by the PCA.
基金Supported by Scientific Research Project for Commonwealth (GYHY200806017)Innovation Project for Graduate of Jiangsu Province (CX09S-018Z)
文摘The evaluation model was established to estimate the number of houses collapsed during typhoon disaster for Zhejiang Province.The factor leading to disaster,the environment fostering disaster and the exposure of buildings were processed by Principal Component Analysis.The key factor was extracted to support input of vector machine model and to build an evaluation model;the historical fitting result kept in line with the fact.In the real evaluation of two typhoons landed in Zhejiang Province in 2008 and 2009,the coincidence of evaluating result and actual value proved the feasibility of this model.