期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
RELATIVE PRINCIPLE COMPONENT AND RELATIVE PRINCIPLE COMPONENT ANALYSIS ALGORITHM 被引量:2
1
作者 Wen Chenglin Wang Tianzhen Hu Jing 《Journal of Electronics(China)》 2007年第1期108-111,共4页
In this letter,the new concept of Relative Principle Component (RPC) and method of RPC Analysis (RPCA) are put forward. Meanwhile,the concepts such as Relative Transform (RT),Ro-tundity Scatter (RS) and so on are intr... In this letter,the new concept of Relative Principle Component (RPC) and method of RPC Analysis (RPCA) are put forward. Meanwhile,the concepts such as Relative Transform (RT),Ro-tundity Scatter (RS) and so on are introduced. This new method can overcome some disadvantages of the classical Principle Component Analysis (PCA) when data are rotundity scatter. The RPC selected by RPCA are more representative,and their significance of geometry is more notable,so that the application of the new algorithm will be very extensive. The performance and effectiveness are simply demonstrated by the geometrical interpretation proposed. 展开更多
关键词 Relative principle component (RPC) Relative Transform (RT) Rotundity Scatter (RS)
下载PDF
GAUSSIAN PRINCIPLE COMPONENTS FOR NONLOCAL MEANS IMAGE DENOISING
2
作者 Li Xiangping Wang Xiaotian Shi Guangming 《Journal of Electronics(China)》 2011年第4期539-547,共9页
NonLocal Means(NLM),taking fully advantage of image redundancy,has been proved to be very effective in noise removal.However,high computational load limits its wide application.Based on Principle Component Analysis(PC... NonLocal Means(NLM),taking fully advantage of image redundancy,has been proved to be very effective in noise removal.However,high computational load limits its wide application.Based on Principle Component Analysis(PCA),Principle Neighborhood Dictionary(PND) was proposed to reduce the computational load of NLM.Nevertheless,as the principle components in PND method are computed directly from noisy image neighborhoods,they are prone to be inaccurate due to the presence of noise.In this paper,an improved scheme for image denoising is proposed.This scheme is based on PND and uses preprocessing via Gaussian filter to eliminate the influence of noise.PCA is then used to project those filtered image neighborhood vectors onto a lower-dimensional space.With the preproc-essing process,the principle components computed are more accurate resulting in an improved de-noising performance.A comparison with some NLM based and state-of-art denoising methods shows that the proposed method performs well in terms of Peak Signal to Noise Ratio(PSNR) as well as image visual fidelity.The experimental results demonstrate that our method outperforms existing methods both subjectively and objectively. 展开更多
关键词 Image denoising NonLocal Means(NLM) Gaussian filter principle component Analysis(PCA)
下载PDF
Retrieve Sea Surface Salinity Using Principal Component Regression Model Based on SMOS Satellite Data 被引量:5
3
作者 ZHAO Hong LI Changjun +2 位作者 LI Hongping LV Kebo ZHAO Qinghui 《Journal of Ocean University of China》 SCIE CAS 2016年第3期399-406,共8页
The sea surface salinity(SSS) is a key parameter in monitoring ocean states. Observing SSS can promote the understanding of global water cycle. This paper provides a new approach for retrieving sea surface salinity fr... The sea surface salinity(SSS) is a key parameter in monitoring ocean states. Observing SSS can promote the understanding of global water cycle. This paper provides a new approach for retrieving sea surface salinity from Soil Moisture and Ocean Salinity(SMOS) satellite data. Based on the principal component regression(PCR) model, SSS can also be retrieved from the brightness temperature data of SMOS L2 measurements and Auxiliary data. 26 pair matchup data is used in model validation for the South China Sea(in the area of 4?–25?N, 105?–125?E). The RMSE value of PCR model retrieved SSS reaches 0.37 psu(practical salinity units) and the RMSE of SMOS SSS1 is 1.65 psu when compared with in-situ SSS. The corresponding Argo daily salinity data during April to June 2013 is also used in our validation with RMSE value 0.46 psu compared to 1.82 psu for daily averaged SMOS L2 products. This indicates that the PCR model is valid and may provide us with a good approach for retrieving SSS from SMOS satellite data. 展开更多
关键词 sea surface salinity retrieved algorithm SMOS principle component regression
下载PDF
Robust Principal Component Test in Gross Error Detection and Identification
4
作者 高倩 阎威武 邵惠鹤 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第5期553-558,共6页
Principle component analysis (PCA) based chi-square test is more sensitive to subtle gross errors and has greater power to correctly detect gross errors than classical chi-square test. However, classical principal c... Principle component analysis (PCA) based chi-square test is more sensitive to subtle gross errors and has greater power to correctly detect gross errors than classical chi-square test. However, classical principal com- ponent test (PCT) is non-robust and can be very sensitive to one or more outliers. In this paper, a Huber function liked robust weight factor was added in the collective chi-square test to eliminate the influence of gross errors on the PCT. Meanwhile, robust chi-square test was applied to modified simultaneous estimation of gross error (MSEGE) strategy to detect and identify multiple gross errors. Simulation results show that the proposed robust test can reduce the possibility of type Ⅱ errors effectively. Adding robust chi-square test into MSEGE does not obviously improve the power of multiple gross error identification, the proposed approach considers the influence of outliers on hypothesis statistic test and is more reasonable. 展开更多
关键词 gross error detection and identification chi-square test ROBUST principle component analysis (PCA) modified simultaneous estimation of gross error (MSEGE)
下载PDF
Online prediction of network-level public transport demand based on principle component analysis
5
作者 Cheng Zhong Peiling Wu +1 位作者 Qi Zhang Zhenliang Ma 《Communications in Transportation Research》 2023年第1期62-71,共10页
Online demand prediction plays an important role in transport network services from operations,controls to management,and information provision.However,the online prediction models are impacted by streaming data quali... Online demand prediction plays an important role in transport network services from operations,controls to management,and information provision.However,the online prediction models are impacted by streaming data quality issues with noise measurements and missing data.To address these,we develop a robust prediction method for online network-level demand prediction in public transport.It consists of a PCA method to extract eigen demand images and an optimization-based pattern recognition model to predict the weights of eigen demand images by making use of the partially observed real-time data up to the prediction time in a day.The prediction model is robust to data quality issues given that the eigen demand images are stable and the predicted weights of them are optimized using the network level data(less impacted by local data quality issues).In the case study,we validate the accuracy and transferability of the model by comparing it with benchmark models and evaluate the robustness in tolerating data quality issues of the proposed model.The experimental results demonstrate that the proposed Pattern Recognition Prediction based on PCA(PRP-PCA)consistently outperforms other benchmark models in accuracy and transferability.Moreover,the model shows high robustness in accommodating data quality issues.For example,the PRP-PCA model is robust to missing data up to 50%regardless of the noise level.We also discuss the hidden patterns behind the network level demand.The visualization analysis shows that eigen demand images are significantly connected to the network structure and station activity variabilities.Though the demand changes dramatically before and after the pandemic,the eigen demand images are consistent over time in Stockholm. 展开更多
关键词 Network-level demand prediction Data quality issues Eigen demand image Pattern recognition principle component analysis
原文传递
A Cyber-Attack Detection System Using Late Fusion Aggregation Enabled Cyber-Net
6
作者 P.Shanmuga Prabha S.Magesh Kumar 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3101-3119,共19页
Today,securing devices connected to the internet is challenging as security threats are generated through various sources.The protection of cyber-physical systems from external attacks is a primary task.The presented ... Today,securing devices connected to the internet is challenging as security threats are generated through various sources.The protection of cyber-physical systems from external attacks is a primary task.The presented method is planned on the prime motive of detecting cybersecurity attacks and their impacted parameters.The proposed architecture employs the LYSIS dataset and formulates Multi Variant Exploratory Data Analysis(MEDA)through Principle Component Analysis(PCA)and Singular Value Decompo-sition(SVD)for the extraction of unique parameters.The feature mappings are analyzed with Recurrent 2 Convolutional Neural Network(R2CNN)and Gradient Boost Regression(GBR)to identify the maximum correlation.Novel Late Fusion Aggregation enabled with Cyber-Net(LFAEC)is the robust derived algorithm.The quantitative analysis uses predicted threat points with actual threat variables from which mean and difference vectors areevaluated.The performance of the presented system is assessed against the parameters such as Accuracy,Precision,Recall,and F1 Score.The proposed method outperformed by 98% to 100% in all quality measures compared to existing methods. 展开更多
关键词 External attacks cyber-physical systems principle component analysis singular value decomposition recurrent 2 convolutional neural network gradient boost regression
下载PDF
Locally linear embedding-based seismic attribute extraction and applications 被引量:5
7
作者 刘杏芳 郑晓东 +2 位作者 徐光成 王玲 杨昊 《Applied Geophysics》 SCIE CSCD 2010年第4期365-375,400,401,共13页
How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle co... How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle component analysis(PCA) is the most widely-used linear dimensionality reduction method at present.However,the relationships between seismic attributes and reservoir features are non-linear,so seismic attribute dimensionality reduction based on linear transforms can't solve non-linear problems well,reducing reservoir prediction precision.As a new non-linear learning method,manifold learning supplies a new method for seismic attribute analysis.It can discover the intrinsic features and rules hidden in the data by computing low-dimensional,neighborhood-preserving embeddings of high-dimensional inputs.In this paper,we try to extract seismic attributes using locally linear embedding(LLE),realizing inter-horizon attributes dimensionality reduction of 3D seismic data first and discuss the optimization of its key parameters.Combining model analysis and case studies,we compare the dimensionality reduction and clustering effects of LLE and PCA,both of which indicate that LLE can retain the intrinsic structure of the inputs.The composite attributes and clustering results based on LLE better characterize the distribution of sedimentary facies,reservoir,and even reservoir fluids. 展开更多
关键词 attribute optimization dimensionality reduction locally linear embedding(LLE) manifold learning principle component analysis(PCA)
下载PDF
Inorganic Elements in Kernel of Amygdalus communis L. Measured Using ICP-OES Method 被引量:1
8
作者 丁玲 彭镰心 刘圆 《Agricultural Science & Technology》 CAS 2012年第6期1254-1259,共6页
[Objective] The aim was to study on distribution of inorganic elements in kernel of Amygdalus communis L., providing reference for quality evaluation of A. communis L. species. [Method] Totally 26 species of inorganic... [Objective] The aim was to study on distribution of inorganic elements in kernel of Amygdalus communis L., providing reference for quality evaluation of A. communis L. species. [Method] Totally 26 species of inorganic elements in kernel, including Al, B, Be, Ca, Co, Cu, Fe, Mg, Mn, Mo, Na, Ni, P, Pb, Si, Sn, Sr, Ti, Zn, Cd, As, Se, V, Hg, Cr and K were measured with inductively coupled plasma emission spectrum (ICP-OES) and principal components analysis (PCA). [Result] A. communis L. of different species and in different factories showed a similar curve in content of inorganic elements; absolute contents of the elements differed significantly. In addition, the accumulated variance contribution of five principle factors achieved as high as 84.371% and the variance contribution made by the first three factors accounted for 67.546%, proving that Fe, Ti, Pb, Na, Se, Cu, Mo, K, Zn, Ni, Ca and Sr were characteristic elements. [Conclusion] The method, which is brief, rapid and accurate, can be used for determination of inorganic elements in kernel of A. communis L., providing theoretical references for further development and utilization of A. communis L. 展开更多
关键词 ICP-OES A. communis L. Inorganic element principle component analysis
下载PDF
Online Supervision of Penicillin Cultivations Based on Rolling MPCA 被引量:9
9
作者 汪志锋 袁景淇 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第1期92-96,共5页
To reduce the variations of the production process in penicillin cultivations, a rolling multivariate statis-tical approach based on multiway principle component analysis (MPCA) is developed and used for fault diagnos... To reduce the variations of the production process in penicillin cultivations, a rolling multivariate statis-tical approach based on multiway principle component analysis (MPCA) is developed and used for fault diagnosis of penicillin cultivations. Using the moving data windows technique, the static MPCA is extended for use in dy-namic process performance monitoring. The control chart is set up using the historical data collected from the past successful batches, thereby resulting in simplification of monitoring charts, easy tracking of the progress in each batch run, and monitoring the occurrence of the observable upsets. Data from the commercial-scale penicillin fer-mentation process are used to develop the rolling model. Using this method, faults are detected in real time and the corresponding measurements of these faults are directly made through inspection of a few simple plots (t-chart, SPE-chart, and T2-chart). Thus, the present methodology allows the process operator to actively monitor the data from several cultivations simultaneously. 展开更多
关键词 multiway principle component analysis FERMENTATION online supervision fault diagnosis ROLLING
下载PDF
Automatic Visual Leakage Detection and Localization from Pipelines in Chemical Process Plants Using Machine Vision Techniques 被引量:7
10
作者 Mina Fahimipirehgalin Emanuel Trunzer +1 位作者 Matthias Odenweller Birgit Vogel-Heuser 《Engineering》 SCIE EI 2021年第6期758-776,共19页
Liquid leakage from pipelines is a critical issue in large-scale process plants.Damage in pipelines affects the normal operation of the plant and increases maintenance costs.Furthermore,it causes unsafe and hazardous ... Liquid leakage from pipelines is a critical issue in large-scale process plants.Damage in pipelines affects the normal operation of the plant and increases maintenance costs.Furthermore,it causes unsafe and hazardous situations for operators.Therefore,the detection and localization of leakages is a crucial task for maintenance and condition monitoring.Recently,the use of infrared(IR)cameras was found to be a promising approach for leakage detection in large-scale plants.IR cameras can capture leaking liquid if it has a higher(or lower)temperature than its surroundings.In this paper,a method based on IR video data and machine vision techniques is proposed to detect and localize liquid leakages in a chemical process plant.Since the proposed method is a vision-based method and does not consider the physical properties of the leaking liquid,it is applicable for any type of liquid leakage(i.e.,water,oil,etc.).In this method,subsequent frames are subtracted and divided into blocks.Then,principle component analysis is performed in each block to extract features from the blocks.All subtracted frames within the blocks are individually transferred to feature vectors,which are used as a basis for classifying the blocks.The k-nearest neighbor algorithm is used to classify the blocks as normal(without leakage)or anomalous(with leakage).Finally,the positions of the leakages are determined in each anomalous block.In order to evaluate the approach,two datasets with two different formats,consisting of video footage of a laboratory demonstrator plant captured by an IR camera,are considered.The results show that the proposed method is a promising approach to detect and localize leakages from pipelines using IR videos.The proposed method has high accuracy and a reasonable detection time for leakage detection.The possibility of extending the proposed method to a real industrial plant and the limitations of this method are discussed at the end. 展开更多
关键词 Leakage detection and localization Image analysis Image pre-processing principle component analysis k-nearest neighbor classification
下载PDF
Relationship between land cover and monsoon interannual variations in east Asia 被引量:5
11
作者 XIANG Bao, LIU Ji-yuan (Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China) 《Journal of Geographical Sciences》 SCIE CSCD 2002年第1期42-48,共7页
Asian monsoon have multiple forms of variations such as seasonal variation, intra-seasonal variation, interannual variation, etc. The interannual variations have not only yearly variations but also variations among se... Asian monsoon have multiple forms of variations such as seasonal variation, intra-seasonal variation, interannual variation, etc. The interannual variations have not only yearly variations but also variations among several years. In general, the yearly variations are described with winter temperature and summer precipitation, and the variations among several years are reflected by circulation of ENSO events. In this study, at first, we analyze the relationship between land cover and interannual monsoon variations represented by precipitation changes using Singular Value Decomposition method based on the time series precipitation data and 8km NOAA AVHRR NDVI data covering 1982 to 1993 in east Asia. Furthermore, after confirmation and reclassification of ENSO events which are recognized as the strong signal of several year monsoon variation, using the same time series NDVI data during 1982 to 1993 in east Asia, we make a Principle Component Analysis and analyzed the correlation of the 7th component eigenvectors and Southern Oscillation Index (SOI) that indicates the characteristic of ENSO events, and summed up the temporal-spatial distribution features of east Asian land cover’s inter-annual variations that are being driven by changes of ENSO events. 展开更多
关键词 east Asian land cover monsoon climate interannual variations Singular Value Decomposition ENSO events principle component Analysis
下载PDF
Microbial community dynamics during composting of animal manures contaminated with arsenic,copper,and oxytetracycline 被引量:5
12
作者 Ebrahim SHEHATA CHENG Deng-miao +5 位作者 MA Qian-qian LI Yan-li LIU Yuan-wang FENG Yao JI Zhen-yu LI Zhao-jun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第6期1649-1659,共11页
Effects of the heavy metal copper(Cu), the metalloid arsenic(As), and the antibiotic oxytetracycline(OTC) on bacterial community structure and diversity during cow and pig manure composting were investigated. Eight tr... Effects of the heavy metal copper(Cu), the metalloid arsenic(As), and the antibiotic oxytetracycline(OTC) on bacterial community structure and diversity during cow and pig manure composting were investigated. Eight treatments were applied, four to each manure type, namely cow manure with:(1) no additives(control),(2) addition of heavy metal and metalloid,(3) addition of OTC and(4) addition of OTC with heavy metal and metalloid;and pig manure with:(5) no additives(control),(6) addition of heavy metal and metalloid,(7) addition of OTC and(8) addition of OTC with heavy metal and metalloid. After 35 days of composting, according to the alpha diversity indices, the combination treatment(OTC with heavy metal and metalloid) in pig manure was less harmful to microbial diversity than the control or heavy metal and metalloid treatments. In cow manure, the treatment with heavy metal and metalloid was the most harmful to the microbial community, followed by the combination and OTC treatments. The OTC and combination treatments had negative effects on the relative abundance of microbes in cow manure composts. The dominant phyla in both manure composts included Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. The microbial diversity relative abundance transformation was dependent on the composting time. Redundancy analysis(RDA) revealed that environmental parameters had the most influence on the bacterial communities. In conclusion, the composting process is the most sustainable technology for reducing heavy metal and metalloid impacts and antibiotic contamination in cow and pig manure. The physicochemical property variations in the manures had a significant effect on the microbial community during the composting process. This study provides an improved understanding of bacterial community composition and its changes during the composting process. 展开更多
关键词 COMPOSTING heavy metal and metalloid OXYTETRACYCLINE microbial community principle component analysis redundancy analysis
下载PDF
Measurement of lumber moisture content based on PCA and GSSVM 被引量:4
13
作者 Jiawei Zhang Wenlong Song +1 位作者 Bin Jiang Mingbao Li 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第2期547-554,共8页
Lumber moisture content(LMC) is the important parameter to judge the dryness of lumber and the quality of wooden products.Nevertheless the data acquired are mostly redundant and incomplete because of the complexity of... Lumber moisture content(LMC) is the important parameter to judge the dryness of lumber and the quality of wooden products.Nevertheless the data acquired are mostly redundant and incomplete because of the complexity of the course of drying,by interference factors that exist in the dryness environment and by the physical characteristics of the lumber itself.To improve the measuring accuracy and reliability of LMC,the optimal support vector machine(SVM) algorithm was put forward for regression analysis LMC.Environmental factors such as air temperature and relative humidity were considered,the data of which were extracted with the principle component analysis method.The regression and prediction of SVM was optimized based on the grid search(GS) technique.Groups of data were sampled and analyzed,and simulation comparison of forecasting performance shows that the main component data were extracted to speed up the convergence rate of the optimum algorithm.The GS-SVM shows a better performance in solving the LMC measuring and forecasting problem. 展开更多
关键词 Lumber moisture content(LMC) principle component analysis(PCA) Grid search(GS) Support vector machine(SVM)
下载PDF
Block Principle Component Analysis with Lp-norm for Robust and Sparse Modelling 被引量:3
14
作者 TANG Ganyi LU Guifu 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第3期398-403,共6页
Block principle and pattern classification component analysis (BPCA) is a recently developed technique in computer vision In this paper, we propose a robust and sparse BPCA with Lp-norm, referred to as BPCALp-S, whi... Block principle and pattern classification component analysis (BPCA) is a recently developed technique in computer vision In this paper, we propose a robust and sparse BPCA with Lp-norm, referred to as BPCALp-S, which inherits the robustness of BPCA-L1 due to the employment of adjustable Lp-norm. In order to perform a sparse modelling, the elastic net is integrated into the objective function. An iterative algorithm which extracts feature vectors one by one greedily is elaborately designed. The monotonicity of the proposed iterative procedure is theoretically guaranteed. Experiments of image classification and reconstruction on several benchmark sets show the effectiveness of the proposed approach. 展开更多
关键词 block principle component analysis(BPCA) LP-NORM robust modelling sparse modelling
原文传递
Risk based security assessment of power system using generalized regression neural network with feature extraction 被引量:2
15
作者 M. Marsadek A. Mohamed 《Journal of Central South University》 SCIE EI CAS 2013年第2期466-479,共14页
A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural n... A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural network (GRNN) with incorporation of feature extraction method using principle component analysis. In the risk based security assessment formulation, the failure rate associated to weather condition of each line was used to compute the probability of line outage for a given weather condition and the extent of security violation was represented by a severity function. For low voltage and line overload, continuous severity function was considered due to its ability to zoom in into the effect of near violating contingency. New severity function for voltage collapse using the voltage collapse prediction index was proposed. To reduce the computational burden, a new contingency screening method was proposed using the risk factor so as to select the critical line outages. The risk based security assessment method using GRNN was implemented on a large scale 87-bus power system and the results show that the risk prediction results obtained using GRNN with the incorporation of principal component analysis give better performance in terms of accuracy. 展开更多
关键词 generalized regression neural network line overload low voltage principle component analysis risk index voltagecollapse
下载PDF
Multimodal Medical Image Registration and Fusion for Quality Enhancement 被引量:2
16
作者 Muhammad Adeel Azam Khan Bahadar Khan +1 位作者 Muhammad Ahmad Manuel Mazzara 《Computers, Materials & Continua》 SCIE EI 2021年第7期821-840,共20页
For the last two decades,physicians and clinical experts have used a single imaging modality to identify the normal and abnormal structure of the human body.However,most of the time,medical experts are unable to accur... For the last two decades,physicians and clinical experts have used a single imaging modality to identify the normal and abnormal structure of the human body.However,most of the time,medical experts are unable to accurately analyze and examine the information from a single imaging modality due to the limited information.To overcome this problem,a multimodal approach is adopted to increase the qualitative and quantitative medical information which helps the doctors to easily diagnose diseases in their early stages.In the proposed method,a Multi-resolution Rigid Registration(MRR)technique is used for multimodal image registration while Discrete Wavelet Transform(DWT)along with Principal Component Averaging(PCAv)is utilized for image fusion.The proposed MRR method provides more accurate results as compared with Single Rigid Registration(SRR),while the proposed DWT-PCAv fusion process adds-on more constructive information with less computational time.The proposed method is tested on CT and MRI brain imaging modalities of the HARVARD dataset.The fusion results of the proposed method are compared with the existing fusion techniques.The quality assessment metrics such as Mutual Information(MI),Normalize Crosscorrelation(NCC)and Feature Mutual Information(FMI)are computed for statistical comparison of the proposed method.The proposed methodology provides more accurate results,better image quality and valuable information for medical diagnoses. 展开更多
关键词 MULTIMODAL REGISTRATION FUSION multi-resolution rigid registration discrete wavelet transform principle component averaging
下载PDF
Genetic background analysis and breed evaluation of Yiling yellow cattle 被引量:1
17
作者 XU Ling ZHANG Wen-gang +12 位作者 LI Jun-ya ZHU De-jiang XU Xiao-cheng TIAN Yan-zi XIONG Xiong GUO Ai-zhen CAO Bing-hai NIU Hong ZHU Bo WANG Ze-zhao LIANG Yong-hu SHEN Hong-xue CHEN Yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第10期2246-2256,共11页
Traditionally, Chinese indigenous cattle is geographically widespread. The present study analyzed based on genome-wide variants to evaluate the genetic background among 157 individuals from four representative indigen... Traditionally, Chinese indigenous cattle is geographically widespread. The present study analyzed based on genome-wide variants to evaluate the genetic background among 157 individuals from four representative indigenous cattle breeds of Hubei Province of China: Yiling yellow cattle (YL), Bashan cattle (BS), Wuling cattle (WL), Zaobei cattle (ZB), and 21 indi- viduals of Qinchuan cattle (QC) from the nearby Shanxi Province of China. Linkage disequilibrium (LD) analysis showed the LD of YL was the lowest (~=0.32) when the distance between markers was approximately 2 kb. Principle component analysis (PCA), and neighbor-joining (NJ)-tree revealed a separation of Yiling yellow cattle from other geographic nearby local cattle breeds. In PCA plot, the YL and QC groups were segregated as expected; moreover, YL individuals clustered together more obviously. In the N J-tree, the YL group formed an independent branch and BS, WL, ZB groups were mixed. We then used the FST statistic approach to reveal long-term selection sweep of YL and other 4 cattle breeds. According to the selective sweep, we identified the unique pathways of YL, associated with production traits. Based on the results, it can be proposed that YL has its unique genetic characteristics of excellence resource, and it is an indispensable cattle breed in China. 展开更多
关键词 Yiling yellow cattle breed evaluation principle component analysis neighbor-joining tree
下载PDF
Pathological Voice Classification Based on Features Dimension Opti mization 被引量:1
18
作者 彭策 徐秋晶 +1 位作者 万柏坤 陈文西 《Transactions of Tianjin University》 EI CAS 2007年第6期456-461,共6页
The classification of pathological voice from healthy voice was studied based upon 27 acoustic features derived from a single sound signal of vowel /a:/. First, the feature space was transferred to reduce the data dim... The classification of pathological voice from healthy voice was studied based upon 27 acoustic features derived from a single sound signal of vowel /a:/. First, the feature space was transferred to reduce the data dimension by principle component analysis (PCA). Then the voice samples were classified according to the reduced PCA parameters by support vector machine (SVM) using radial basis function (RBF) as a kernel function. Meanwhile, by changing the ratio of opposite class samples, the accuracy under different features combinations was tested. Experimental data were provided by the voice database of Massachusetts Eye and Ear Infirmary (MEEI) in which 216 vowel /a:/ samples were collected from subjects of healthy and pathological cases, and tested with 5 fold cross-validation method. The result shows the positive rate of pathological voices was improved from 92% to 98% through the PCA method. STD, Fatr, Tasm, NHR, SEG, and PER are pathology sensitive features in illness detection. Using these sensitive features the accuracy of detection of pathological voice from healthy voice can reach 97%. 展开更多
关键词 pathological voice classification support vector machine radial basis function principle component analysis pathology sensitive features
下载PDF
Data-Driven Temporal Filtering on Teager Energy Time Trajectory for Robust Speech Recognition 被引量:1
19
作者 赵军辉 谢湘 匡镜明 《Journal of Beijing Institute of Technology》 EI CAS 2006年第2期195-200,共6页
Data-driven temporal filtering technique is integrated into the time trajectory of Teager energy operation (TEO) based feature parameter for improving the robustness of speech recognition system against noise. Three... Data-driven temporal filtering technique is integrated into the time trajectory of Teager energy operation (TEO) based feature parameter for improving the robustness of speech recognition system against noise. Three kinds of data-driven temporal filters are investigated for the motivation of alleviating the harmful effects that the environmental factors have on the speech. The filters include: principle component analysis (PCA) based filters, linear discriminant analysis (LDA) based filters and minimum classification error (MCE) based filters. Detailed comparative analysis among these temporal filtering approaches applied in Teager energy domain is presented. It is shown that while all of them can improve the recognition performance of the original TEO based feature parameter in adverse environment, MCE based temporal filtering can provide the lowest error rate as SNR decreases than any other algorithms. 展开更多
关键词 robust speech recognition principle component analysis linear discriminant analysis minimum classification error
下载PDF
Improvement of tissue analysis and classification using optical coherence tomography combined with Raman spectroscopy 被引量:1
20
作者 Chih-Hao Liu Ji Qi +4 位作者 Jing Lu Shang Wang Chen Wu Wei-Chuan Shih Kirill V.Larin 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2015年第4期10-19,共10页
Optical coherence tomography(OCT)provides significant advantages of high resolution(approaching the histopathology level)realtime imaging of tsess without use of contrast agents.Based on these advantages,the microstru... Optical coherence tomography(OCT)provides significant advantages of high resolution(approaching the histopathology level)realtime imaging of tsess without use of contrast agents.Based on these advantages,the microstructural features of tumors can be visualized and detected intra-operatively.However,it is still not clinically accepted for tumor margin delin-eation due to poor specificity and accuracy.In contrast,Raman spectroscopy(RS)can obtain tissue information at the molecular level,but does not provide real-time inaging capability.Therefore,combining OCT and RS could provide synergy.To this end,we present a tissue analysis and dassification method using both the slope of OCT intensity signal Vs depth and the principle components from the RS spectrum as the indicators for tissuse characterization.The goal of this study was to understand prediction accuracy of OCT and combined OCT/RS method for dassification of optically similar tisues and organs.Our pilot experiments were performed on mouse kidneys,livers,and small intestines(SIs).The prediction accuracy with five-fold cross validation of the method has been evaluated by the support vector machine(SVM)method.The results demonstrate that tissue characterization based on the OCT/RS method was superior compared to using OCT structural information alone.This combined OCT/RS method is potentially useful as a noninvasive optical biopsy technique for rapid and automatic tissue characterization during surgery. 展开更多
关键词 OCT signal slope principle component analysis multi-support vector machine Raman spectra
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部