3D printing of functional energy storage devices is receiving escalating attention over the years due to the customizable manufacturing flexibility and imparted high areal and gravimetric energy density of three-dimen...3D printing of functional energy storage devices is receiving escalating attention over the years due to the customizable manufacturing flexibility and imparted high areal and gravimetric energy density of three-dimensional structured devices, which contribute to the creation of numerous new opportunities for futuristic electronics. Graphene-based inks are ideal elements for the realization of 3D printed energy storage devices if the attractive intrinsic physiochemical properties of graphene could be preserved. However, it is still a great challenge to prepare uniformly dispersed graphene-based materials with desired rheological properties for 3D printing. Here we report a facile strategy for 3D printing of supercapacitors from a highly concentrated graphene oxide (GO) ink. The GO is properly dispersed and the ink fulfills the stringent rheological specifications for 3D printing. The printed GO electrode is functionalized with enhanced structural stability for proper reduction to graphene. The printed supercapacitors deliver the potential to linearly scale up in areal capacitance without jeopardizing the gravimetric capacitance when increasing printed layers. The results hold great promise for the construction of 3D structured energy storage devices that cater to the challenges from next-generation electronics.展开更多
近年来随着3D打印技术的飞速发展,材料挤出成型工艺制备功能梯度材料成为研究热点。材料之间的过渡是影响最终成型质量的关键因素。目前,国内外学者只研究了两种独立材料之间相互转变的过渡距离,对不同组分材料之间的转变研究较少。采...近年来随着3D打印技术的飞速发展,材料挤出成型工艺制备功能梯度材料成为研究热点。材料之间的过渡是影响最终成型质量的关键因素。目前,国内外学者只研究了两种独立材料之间相互转变的过渡距离,对不同组分材料之间的转变研究较少。采用双料筒打印机研究了不同组分材料之间的过渡距离,并通过实验探究不同进给量对过渡距离的影响,在保证打印质量的前提下得到了过渡距离最小的进给量。以Visual Studio 2019为开发平台提出一种新的进料策略缩短过渡距离,在路径规划中对切片得到点的材料信息进行判断,对组分增大的材料根据变化值计算其进给量并输出生成新型G代码。最终,采用新型G代码进行打印实验,缩短了材料过渡距离得到了理想的材料过渡曲线。展开更多
基金financially supported by the National Key R&D Program of China (no. 2017YFE0111500)the National Natural Science Foundation of China (nos. 51673123 and 51222305 and 51803141)Sichuan Province Science and Technology Project (no. 2016JQ0049)
文摘3D printing of functional energy storage devices is receiving escalating attention over the years due to the customizable manufacturing flexibility and imparted high areal and gravimetric energy density of three-dimensional structured devices, which contribute to the creation of numerous new opportunities for futuristic electronics. Graphene-based inks are ideal elements for the realization of 3D printed energy storage devices if the attractive intrinsic physiochemical properties of graphene could be preserved. However, it is still a great challenge to prepare uniformly dispersed graphene-based materials with desired rheological properties for 3D printing. Here we report a facile strategy for 3D printing of supercapacitors from a highly concentrated graphene oxide (GO) ink. The GO is properly dispersed and the ink fulfills the stringent rheological specifications for 3D printing. The printed GO electrode is functionalized with enhanced structural stability for proper reduction to graphene. The printed supercapacitors deliver the potential to linearly scale up in areal capacitance without jeopardizing the gravimetric capacitance when increasing printed layers. The results hold great promise for the construction of 3D structured energy storage devices that cater to the challenges from next-generation electronics.
文摘近年来随着3D打印技术的飞速发展,材料挤出成型工艺制备功能梯度材料成为研究热点。材料之间的过渡是影响最终成型质量的关键因素。目前,国内外学者只研究了两种独立材料之间相互转变的过渡距离,对不同组分材料之间的转变研究较少。采用双料筒打印机研究了不同组分材料之间的过渡距离,并通过实验探究不同进给量对过渡距离的影响,在保证打印质量的前提下得到了过渡距离最小的进给量。以Visual Studio 2019为开发平台提出一种新的进料策略缩短过渡距离,在路径规划中对切片得到点的材料信息进行判断,对组分增大的材料根据变化值计算其进给量并输出生成新型G代码。最终,采用新型G代码进行打印实验,缩短了材料过渡距离得到了理想的材料过渡曲线。