Surface modification of natural cellulose fibers with nanomaterials is an effective strategy for producing functional textiles for multiple applications.A4-sized printing paper is a commonly used,cheap,and easily acqu...Surface modification of natural cellulose fibers with nanomaterials is an effective strategy for producing functional textiles for multiple applications.A4-sized printing paper is a commonly used,cheap,and easily acquirable office supply which is mainly made of cellulose fibers.Here,we report green and simple nanofabrication of A4 paper to endow it with high capability for fragrance encapsulation and sustained release,and strong adsorption to indoor air pollutants.The method utilizes the sugar molecule of cellulose for in-situ growth ofγ-cyclodextrin(γ-CD)metal-organic frameworks(MOFs)on A4 paper.The obtainedγ-CD-MOF/A4 nanocomposites have superior specific surface area and high porous structure.Theγ-CD-MOF/A4 nanocomposites can effectively encapsulate fragrant molecules through host-guest interaction.Theγ-CD-MOF/A4 nanocomposites also show strong absorption capability to formaldehyde and carbon dioxide through the formation of hydrogen bonding and chemical bonds.Theseγ-CD-MOF/A4nanocomposites combine the advantages of both A4 paper andγ-CD-MOF,which can be used in indoor air freshening and cleaning.展开更多
In Iran, due to abundant restrictions on harvesting wood from northern forests by implementing the preservation project and also lack of possibility for sufficient wood production, development of the area of planting ...In Iran, due to abundant restrictions on harvesting wood from northern forests by implementing the preservation project and also lack of possibility for sufficient wood production, development of the area of planting poplar is quite inevitable. Poplar wood properties have special importance to produce many wood production, particularly pulp and paper. Paper factories are the major consumers of poplar wood at the global level and this is because of unique morphological, physical, mechanical and technological properties of poplar wood. Therefore, regarding the importance of using this species in making various printing and writing paper, packaging or carton, cardboard and newsprint, in this study, costs of poplar production in one hectare including planting and harvesting were examined and determined. Then, based on conversion coefficients of FAO, required round wood, productivity and the cost of poplar wood were calculated for the producing various kinds of paper. The results indicate that carton and cardboard paper or packaging allocate the lowest cost and highest return, while printing and writing paper had highest cost and lowest return in terms of poplar wood supply needed for paper production.展开更多
Flexible thermoelectric materials are presented with potential applications in electronic devices and energy conversion due to their convenient preparation,good flexibility,and various forms.However,as ductility is ra...Flexible thermoelectric materials are presented with potential applications in electronic devices and energy conversion due to their convenient preparation,good flexibility,and various forms.However,as ductility is rarely observed in inorganic semiconductors and ceramic insulators,reports on applications of inorganic oxide materials in flexible thermoelectric materials are sparse.Here,we report a new method for the synthesis of a flexible Na_(1.4)Co_(2)O_(4) thermoelectric material based on Na_(1.4)Co_(2)O_(4) bulk materials,which are prepared by a self-flux method and painted on print paper.Seebeck coefficient and power factor of the obtained thermoelectric material are 78-102 μVK^(-1) and 159e223 mWm^-(1)K^(-2),respectively,in a temperature range of 303-522 K,which are superior to those values of other conductive polymers and their compounds.More interestingly,the n-type Na_(1.4)Co_(2)O_(4) flexible material is obtained in the painting process at higher pressure with Seebeck coefficients of109 to183 μVK^(-1) in a temperature range of 303-522 K.The convenient preparation method of these novel flexible thermoelectric materials may be expanded to the synthesis of other flexible thermoelectric materials,which will be the focus of future work.展开更多
基金supported by the National Key Research and Development Program of China(2016YFA0200301)the National Natural Science Foundation of China(21875211,52073249,51833008,and51603181)the Zhejiang Provincial Key Research and Development Program(2020C01123)。
文摘Surface modification of natural cellulose fibers with nanomaterials is an effective strategy for producing functional textiles for multiple applications.A4-sized printing paper is a commonly used,cheap,and easily acquirable office supply which is mainly made of cellulose fibers.Here,we report green and simple nanofabrication of A4 paper to endow it with high capability for fragrance encapsulation and sustained release,and strong adsorption to indoor air pollutants.The method utilizes the sugar molecule of cellulose for in-situ growth ofγ-cyclodextrin(γ-CD)metal-organic frameworks(MOFs)on A4 paper.The obtainedγ-CD-MOF/A4 nanocomposites have superior specific surface area and high porous structure.Theγ-CD-MOF/A4 nanocomposites can effectively encapsulate fragrant molecules through host-guest interaction.Theγ-CD-MOF/A4 nanocomposites also show strong absorption capability to formaldehyde and carbon dioxide through the formation of hydrogen bonding and chemical bonds.Theseγ-CD-MOF/A4nanocomposites combine the advantages of both A4 paper andγ-CD-MOF,which can be used in indoor air freshening and cleaning.
文摘In Iran, due to abundant restrictions on harvesting wood from northern forests by implementing the preservation project and also lack of possibility for sufficient wood production, development of the area of planting poplar is quite inevitable. Poplar wood properties have special importance to produce many wood production, particularly pulp and paper. Paper factories are the major consumers of poplar wood at the global level and this is because of unique morphological, physical, mechanical and technological properties of poplar wood. Therefore, regarding the importance of using this species in making various printing and writing paper, packaging or carton, cardboard and newsprint, in this study, costs of poplar production in one hectare including planting and harvesting were examined and determined. Then, based on conversion coefficients of FAO, required round wood, productivity and the cost of poplar wood were calculated for the producing various kinds of paper. The results indicate that carton and cardboard paper or packaging allocate the lowest cost and highest return, while printing and writing paper had highest cost and lowest return in terms of poplar wood supply needed for paper production.
基金This project was supported by the National Natural Science Foundation of China under the Nos.51702168 and 51927801the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure under the No.SKL201705SICthe Inner Mongolia Engineering Research Center of Multifunctional Copper Materials.
文摘Flexible thermoelectric materials are presented with potential applications in electronic devices and energy conversion due to their convenient preparation,good flexibility,and various forms.However,as ductility is rarely observed in inorganic semiconductors and ceramic insulators,reports on applications of inorganic oxide materials in flexible thermoelectric materials are sparse.Here,we report a new method for the synthesis of a flexible Na_(1.4)Co_(2)O_(4) thermoelectric material based on Na_(1.4)Co_(2)O_(4) bulk materials,which are prepared by a self-flux method and painted on print paper.Seebeck coefficient and power factor of the obtained thermoelectric material are 78-102 μVK^(-1) and 159e223 mWm^-(1)K^(-2),respectively,in a temperature range of 303-522 K,which are superior to those values of other conductive polymers and their compounds.More interestingly,the n-type Na_(1.4)Co_(2)O_(4) flexible material is obtained in the painting process at higher pressure with Seebeck coefficients of109 to183 μVK^(-1) in a temperature range of 303-522 K.The convenient preparation method of these novel flexible thermoelectric materials may be expanded to the synthesis of other flexible thermoelectric materials,which will be the focus of future work.