Yin [1] has developed a new Bayesian measure of evidence for testing a point null hypothesis which agrees with the frequentist p-value thereby, solving Lindley’s paradox. Yin and Li [2] extended the methodology of Yi...Yin [1] has developed a new Bayesian measure of evidence for testing a point null hypothesis which agrees with the frequentist p-value thereby, solving Lindley’s paradox. Yin and Li [2] extended the methodology of Yin [1] to the case of the Behrens-Fisher problem by assigning Jeffreys’ independent prior to the nuisance parameters. In this paper, we were able to show both analytically and through the results from simulation studies that the methodology of Yin?[1] solves simultaneously, the Behrens-Fisher problem and Lindley’s paradox when a Gamma prior is assigned to the nuisance parameters.展开更多
贝叶斯网络是目前不确定知识表达和推理领域最有效的理论模型之一,利用贝叶斯网络进行分析和推理前首先需要通过结构学习和参数学习获取其网络模型,其中结构学习是参数学习的基础。针对现有萤火虫算法不符合生物学规则以及学习贝叶斯网...贝叶斯网络是目前不确定知识表达和推理领域最有效的理论模型之一,利用贝叶斯网络进行分析和推理前首先需要通过结构学习和参数学习获取其网络模型,其中结构学习是参数学习的基础。针对现有萤火虫算法不符合生物学规则以及学习贝叶斯网络结构存在效率低、容易陷入局部最优等问题,设计了一种基于互信息与性别机制的萤火虫算法(firefly algorithm based on mutual information and gender mechanism,MGM-FA)。首先,通过计算节点互信息得到贝叶斯网络骨架图,基于骨架图驱动MGM-FA算法生成初始种群;其次,引入基于性别机制的个性化贝叶斯网络种群更新策略,以保障贝叶斯网络个体的多样性;最后,引入局部优化器和扰动操作符,增强算法的寻优能力。分别在不同规模的标准网络上进行仿真实验,与现有同类型算法相比,该算法精度和效率均有所提升。展开更多
为研究串联系统下多部件应力-强度模型的可靠性问题,基于Kumaraswamy分布,采用极大似然法给出参数及应力-强度模型可靠度的极大似然估计(maximum likelihood estimation,MLE);再利用Jeffreys准则构造无信息先验分布,运用马尔可夫链蒙特...为研究串联系统下多部件应力-强度模型的可靠性问题,基于Kumaraswamy分布,采用极大似然法给出参数及应力-强度模型可靠度的极大似然估计(maximum likelihood estimation,MLE);再利用Jeffreys准则构造无信息先验分布,运用马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)方法给出参数及应力-强度模型可靠度的贝叶斯估计;最后,利用逆矩估计方法给出参数及应力-强度模型可靠度的逆矩估计(inverse moment estimation,IME)。数值模拟结果表明,在不同系统可靠度及不同样本量条件下,通过对3种估计方法的数值进行比较发现贝叶斯估计效果最好,IME优于MLE。该研究为探讨串联系统多部件应力-强度模型可靠性提供了一定的理论基础。展开更多
目前,雾霾所引起的图像模糊问题,主流的算法主要都侧重于处理雾气,对于霾没有相关的处理.针对此缺陷,提出了一种联合K-SVD(K-singular value decomposition)稀疏算法和暗通道先验算法的全新算法,来克服雾霾引起的图像模糊问题.图像的处...目前,雾霾所引起的图像模糊问题,主流的算法主要都侧重于处理雾气,对于霾没有相关的处理.针对此缺陷,提出了一种联合K-SVD(K-singular value decomposition)稀疏算法和暗通道先验算法的全新算法,来克服雾霾引起的图像模糊问题.图像的处理主要分两个步骤:第一步是运用KSVD稀疏算法去除图像中的霾恢复出只含雾气的图像,第二步通过经典的暗通道算法去除图像上的层层雾气.计算机仿真结果表明,该方法对于图像的处理结果要优于FVR(Fast visiblity restoration)算法,暗通道先验算法和直方图均衡化算法.展开更多
文摘Yin [1] has developed a new Bayesian measure of evidence for testing a point null hypothesis which agrees with the frequentist p-value thereby, solving Lindley’s paradox. Yin and Li [2] extended the methodology of Yin [1] to the case of the Behrens-Fisher problem by assigning Jeffreys’ independent prior to the nuisance parameters. In this paper, we were able to show both analytically and through the results from simulation studies that the methodology of Yin?[1] solves simultaneously, the Behrens-Fisher problem and Lindley’s paradox when a Gamma prior is assigned to the nuisance parameters.
文摘贝叶斯网络是目前不确定知识表达和推理领域最有效的理论模型之一,利用贝叶斯网络进行分析和推理前首先需要通过结构学习和参数学习获取其网络模型,其中结构学习是参数学习的基础。针对现有萤火虫算法不符合生物学规则以及学习贝叶斯网络结构存在效率低、容易陷入局部最优等问题,设计了一种基于互信息与性别机制的萤火虫算法(firefly algorithm based on mutual information and gender mechanism,MGM-FA)。首先,通过计算节点互信息得到贝叶斯网络骨架图,基于骨架图驱动MGM-FA算法生成初始种群;其次,引入基于性别机制的个性化贝叶斯网络种群更新策略,以保障贝叶斯网络个体的多样性;最后,引入局部优化器和扰动操作符,增强算法的寻优能力。分别在不同规模的标准网络上进行仿真实验,与现有同类型算法相比,该算法精度和效率均有所提升。
文摘为研究串联系统下多部件应力-强度模型的可靠性问题,基于Kumaraswamy分布,采用极大似然法给出参数及应力-强度模型可靠度的极大似然估计(maximum likelihood estimation,MLE);再利用Jeffreys准则构造无信息先验分布,运用马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)方法给出参数及应力-强度模型可靠度的贝叶斯估计;最后,利用逆矩估计方法给出参数及应力-强度模型可靠度的逆矩估计(inverse moment estimation,IME)。数值模拟结果表明,在不同系统可靠度及不同样本量条件下,通过对3种估计方法的数值进行比较发现贝叶斯估计效果最好,IME优于MLE。该研究为探讨串联系统多部件应力-强度模型可靠性提供了一定的理论基础。
文摘目前,雾霾所引起的图像模糊问题,主流的算法主要都侧重于处理雾气,对于霾没有相关的处理.针对此缺陷,提出了一种联合K-SVD(K-singular value decomposition)稀疏算法和暗通道先验算法的全新算法,来克服雾霾引起的图像模糊问题.图像的处理主要分两个步骤:第一步是运用KSVD稀疏算法去除图像中的霾恢复出只含雾气的图像,第二步通过经典的暗通道算法去除图像上的层层雾气.计算机仿真结果表明,该方法对于图像的处理结果要优于FVR(Fast visiblity restoration)算法,暗通道先验算法和直方图均衡化算法.