Taking cruciform welded joints under different corrosion degrees, together with 45° inclined angle and full penetration load-carrying fillet, as the research object, the stress intensity factor of a quarter-circu...Taking cruciform welded joints under different corrosion degrees, together with 45° inclined angle and full penetration load-carrying fillet, as the research object, the stress intensity factor of a quarter-circular comer crack of welded joints is calculated based on FRANC3D with ABAQUS. Effects of different corrosion pit sizes, crack aspect ratios, and crack depths on stress intensity factor are analyzed. The results show that pit depth plays a major role in stress intensity factor, while the effect of pit radius is relatively small. The cracking modes of the surface and the deepest point are mode I, and mixed modes I and II, respectively. Effects of pit depths, crack aspect ratios, and crack depths on the stress intensity factor at the surface point are greater than at the deepest point.展开更多
The effect of prior corrosion on the mechanical properties of 7475-T761 aluminum alloy was investigated by immersion test, stress corrosion test, cathode charge method and electrochemical polarization test. Results sh...The effect of prior corrosion on the mechanical properties of 7475-T761 aluminum alloy was investigated by immersion test, stress corrosion test, cathode charge method and electrochemical polarization test. Results show that prior corrosion in the solution with 3 wt% NaC1 and 0.5 wt% H202 leads to mechanical properties deterioration of 7475-T761 aluminum alloy. Moreover, the elongation decreases significantly. This is mainly attributed to electrochemical corrosion and hydrogen embrittlement, in which corrosion plays a major role. Tensile stress promotes the degradation of the mechanical properties by accelerating the pitting corrosion and hydrogen embrittlement.展开更多
基金supported by the National Natural Science Foundation of China(51378430 and 51378431)
文摘Taking cruciform welded joints under different corrosion degrees, together with 45° inclined angle and full penetration load-carrying fillet, as the research object, the stress intensity factor of a quarter-circular comer crack of welded joints is calculated based on FRANC3D with ABAQUS. Effects of different corrosion pit sizes, crack aspect ratios, and crack depths on stress intensity factor are analyzed. The results show that pit depth plays a major role in stress intensity factor, while the effect of pit radius is relatively small. The cracking modes of the surface and the deepest point are mode I, and mixed modes I and II, respectively. Effects of pit depths, crack aspect ratios, and crack depths on the stress intensity factor at the surface point are greater than at the deepest point.
基金financially supported by the National Natural Science Foundation of China(No.51171154)the National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University(Grant No.gf 201401001)
文摘The effect of prior corrosion on the mechanical properties of 7475-T761 aluminum alloy was investigated by immersion test, stress corrosion test, cathode charge method and electrochemical polarization test. Results show that prior corrosion in the solution with 3 wt% NaC1 and 0.5 wt% H202 leads to mechanical properties deterioration of 7475-T761 aluminum alloy. Moreover, the elongation decreases significantly. This is mainly attributed to electrochemical corrosion and hydrogen embrittlement, in which corrosion plays a major role. Tensile stress promotes the degradation of the mechanical properties by accelerating the pitting corrosion and hydrogen embrittlement.