SVM handles classification problem only considering samples themselves and the classification effect depends on the characteristics of the training samples but not the current information of classified problem.From th...SVM handles classification problem only considering samples themselves and the classification effect depends on the characteristics of the training samples but not the current information of classified problem.From the phenomena of data crossing in systems,this paper improves the classification effect of SVM by adding the prior probability item reflecting the classified problem information into the decision function,which fuses the Bayesian criterion into SVM.The detailed deducing process and realizing steps of the algorithm are put forward.It is verified through two instances.The results showthat the new algorithm has better effect than the traditional SVM algorithm,and its robustness and sensitivity are all improved.展开更多
本文研究了在设计阵非列满秩情况下多元线性模型的Bayes估计问题.假定回归系数矩阵和协方差阵具有正态-逆Wishart先验分布,运用Bayes理论导出了回归系数矩阵的可估函数和协方差阵的同时Bayes估计.然后在Bayes Mean Square Error(BMSE)...本文研究了在设计阵非列满秩情况下多元线性模型的Bayes估计问题.假定回归系数矩阵和协方差阵具有正态-逆Wishart先验分布,运用Bayes理论导出了回归系数矩阵的可估函数和协方差阵的同时Bayes估计.然后在Bayes Mean Square Error(BMSE)准则和Bayes Mean Square Error Matrix(BMSEM)准则下,证明了可估函数和协方差阵的Bayes估计优于广义最小二乘(Generalized Least Square,GLS)估计.另外,在Bayes Pitman Closeness(BPC)准则下研究了可估函数的Bayes估计的优良性.最后,进行了Monte Carlo模拟研究,进一步验证了理论结果.展开更多
文摘SVM handles classification problem only considering samples themselves and the classification effect depends on the characteristics of the training samples but not the current information of classified problem.From the phenomena of data crossing in systems,this paper improves the classification effect of SVM by adding the prior probability item reflecting the classified problem information into the decision function,which fuses the Bayesian criterion into SVM.The detailed deducing process and realizing steps of the algorithm are put forward.It is verified through two instances.The results showthat the new algorithm has better effect than the traditional SVM algorithm,and its robustness and sensitivity are all improved.
文摘本文研究了在设计阵非列满秩情况下多元线性模型的Bayes估计问题.假定回归系数矩阵和协方差阵具有正态-逆Wishart先验分布,运用Bayes理论导出了回归系数矩阵的可估函数和协方差阵的同时Bayes估计.然后在Bayes Mean Square Error(BMSE)准则和Bayes Mean Square Error Matrix(BMSEM)准则下,证明了可估函数和协方差阵的Bayes估计优于广义最小二乘(Generalized Least Square,GLS)估计.另外,在Bayes Pitman Closeness(BPC)准则下研究了可估函数的Bayes估计的优良性.最后,进行了Monte Carlo模拟研究,进一步验证了理论结果.