期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Multi Attribute Case Based Privacy-preserving for Healthcare Transactional Data Using Cryptography
1
作者 K.Saranya K.Premalatha 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2029-2042,共14页
Medical data mining has become an essential task in healthcare sector to secure the personal and medical data of patients using privacy policy.In this background,several authentication and accessibility issues emerge ... Medical data mining has become an essential task in healthcare sector to secure the personal and medical data of patients using privacy policy.In this background,several authentication and accessibility issues emerge with an inten-tion to protect the sensitive details of the patients over getting published in open domain.To solve this problem,Multi Attribute Case based Privacy Preservation(MACPP)technique is proposed in this study to enhance the security of privacy-preserving data.Private information can be any attribute information which is categorized as sensitive logs in a patient’s records.The semantic relation between transactional patient records and access rights is estimated based on the mean average value to distinguish sensitive and non-sensitive information.In addition to this,crypto hidden policy is also applied here to encrypt the sensitive data through symmetric standard key log verification that protects the personalized sensitive information.Further,linear integrity verification provides authentication rights to verify the data,improves the performance of privacy preserving techni-que against intruders and assures high security in healthcare setting. 展开更多
关键词 privacy-preserving crypto policy medical data mining integrity and verification personalized records CRYPTOGRAPHY
下载PDF
Attacks on Anonymization-Based Privacy-Preserving: A Survey for Data Mining and Data Publishing 被引量:1
2
作者 Abou-el-ela Abdou Hussien Nermin Hamza Hesham A. Hefny 《Journal of Information Security》 2013年第2期101-112,共12页
Data mining is the extraction of vast interesting patterns or knowledge from huge amount of data. The initial idea of privacy-preserving data mining PPDM was to extend traditional data mining techniques to work with t... Data mining is the extraction of vast interesting patterns or knowledge from huge amount of data. The initial idea of privacy-preserving data mining PPDM was to extend traditional data mining techniques to work with the data modified to mask sensitive information. The key issues were how to modify the data and how to recover the data mining result from the modified data. Privacy-preserving data mining considers the problem of running data mining algorithms on confidential data that is not supposed to be revealed even to the party running the algorithm. In contrast, privacy-preserving data publishing (PPDP) may not necessarily be tied to a specific data mining task, and the data mining task may be unknown at the time of data publishing. PPDP studies how to transform raw data into a version that is immunized against privacy attacks but that still supports effective data mining tasks. Privacy-preserving for both data mining (PPDM) and data publishing (PPDP) has become increasingly popular because it allows sharing of privacy sensitive data for analysis purposes. One well studied approach is the k-anonymity model [1] which in turn led to other models such as confidence bounding, l-diversity, t-closeness, (α,k)-anonymity, etc. In particular, all known mechanisms try to minimize information loss and such an attempt provides a loophole for attacks. The aim of this paper is to present a survey for most of the common attacks techniques for anonymization-based PPDM & PPDP and explain their effects on Data Privacy. 展开更多
关键词 Privacy K-ANONYMITY data mining privacy-preserving data PUBLISHING privacy-preserving data mining
下载PDF
A classification-based privacy-preserving decision-making for secure data sharing in Internet of Things assisted applications 被引量:1
3
作者 Alaa Omran Almagrabi A.K.Bashir 《Digital Communications and Networks》 SCIE CSCD 2022年第4期436-445,共10页
The introduction of the Internet of Things(IoT)paradigm serves as pervasive resource access and sharing platform for different real-time applications.Decentralized resource availability,access,and allocation provide a... The introduction of the Internet of Things(IoT)paradigm serves as pervasive resource access and sharing platform for different real-time applications.Decentralized resource availability,access,and allocation provide a better quality of user experience regardless of the application type and scenario.However,privacy remains an open issue in this ubiquitous sharing platform due to massive and replicated data availability.In this paper,privacy-preserving decision-making for the data-sharing scheme is introduced.This scheme is responsible for improving the security in data sharing without the impact of replicated resources on communicating users.In this scheme,classification learning is used for identifying replicas and accessing granted resources independently.Based on the trust score of the available resources,this classification is recurrently performed to improve the reliability of information sharing.The user-level decisions for information sharing and access are made using the classification of the resources at the time of availability.This proposed scheme is verified using the metrics access delay,success ratio,computation complexity,and sharing loss. 展开更多
关键词 Classification learning data mining IoT privacy-preserving Resource replication
下载PDF
Distributed anonymous data perturbation method for privacy-preserving data mining 被引量:4
4
作者 Feng LI Jin MA Jian-hua LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第7期952-963,共12页
Privacy is a critical requirement in distributed data mining. Cryptography-based secure multiparty computation is a main approach for privacy preserving. However, it shows poor performance in large scale distributed s... Privacy is a critical requirement in distributed data mining. Cryptography-based secure multiparty computation is a main approach for privacy preserving. However, it shows poor performance in large scale distributed systems. Meanwhile, data perturbation techniques are comparatively efficient but are mainly used in centralized privacy-preserving data mining (PPDM). In this paper, we propose a light-weight anonymous data perturbation method for efficient privacy preserving in distributed data mining. We first define the privacy constraints for data perturbation based PPDM in a semi-honest distributed environment. Two protocols are proposed to address these constraints and protect data statistics and the randomization process against collusion attacks: the adaptive privacy-preserving summary protocol and the anonymous exchange protocol. Finally, a distributed data perturbation framework based on these protocols is proposed to realize distributed PPDM. Experiment results show that our approach achieves a high security level and is very efficient in a large scale distributed environment. 展开更多
关键词 privacy-preserving data mining (ppdm Distributed data mining data perturbation
原文传递
PPDM中面向k-匿名的MI Loss评估模型
5
作者 谷青竹 董红斌 《计算机工程》 CAS CSCD 北大核心 2022年第4期143-147,共5页
隐私保护数据挖掘(PPDM)利用匿名化等方法使数据所有者在不泄露隐私信息的前提下,安全发布在数据挖掘中有效可用的数据集。k-匿名算法作为PPDM研究使用最广泛的算法之一,具有计算开销低、数据形变小、能抵御链接攻击等优点,但是在一些k... 隐私保护数据挖掘(PPDM)利用匿名化等方法使数据所有者在不泄露隐私信息的前提下,安全发布在数据挖掘中有效可用的数据集。k-匿名算法作为PPDM研究使用最广泛的算法之一,具有计算开销低、数据形变小、能抵御链接攻击等优点,但是在一些k-匿名算法研究中使用的数据可用性评估模型的权重设置不合理,导致算法选择的最优匿名数据集在后续的分类问题中分类准确率较低。提出一种使用互信息计算权重的互信息损失(MI Loss)评估模型。互信息反映变量间的关联关系,MI Loss评估模型根据准标识符和标签之间的互信息计算权重,并通过Loss公式得到各个准标识符的信息损失,将加权后的准标识符信息损失的和作为数据集的信息损失,以弥补评估模型的缺陷。实验结果证明,运用MI Loss评估模型指导k-匿名算法能够明显降低匿名数据集在后续分类中的可用性丢失,相较于Loss模型和Entropy Loss模型,该模型分类准确率提升了0.73%~3.00%。 展开更多
关键词 隐私保护数据挖掘 k-匿名算法 数据可用性 分类准确率 MI Loss评估模型
下载PDF
一种基于格的隐私保护聚类数据挖掘方法 被引量:26
6
作者 崔一辉 宋伟 +2 位作者 王占兵 史成良 程芳权 《软件学报》 EI CSCD 北大核心 2017年第9期2293-2308,共16页
由于云计算的诸多优势,用户倾向于将数据挖掘和数据分析等业务外包到专业的云服务提供商,然而随之而来的是用户的隐私不能得到保证.目前,众多学者关注云环境下敏感数据存储的隐私保护问题,而隐私保护数据分析的相关研究还比较少.但是如... 由于云计算的诸多优势,用户倾向于将数据挖掘和数据分析等业务外包到专业的云服务提供商,然而随之而来的是用户的隐私不能得到保证.目前,众多学者关注云环境下敏感数据存储的隐私保护问题,而隐私保护数据分析的相关研究还比较少.但是如果仅仅为了保护数据隐私,而不对大数据进行挖掘分析,大数据也就失去了其潜在的巨大价值.提出了一种云计算环境下基于格的隐私保护数据挖掘方法,利用格加密构建隐私数据的安全同态运算方法,并且在此基础上实现了支持隐私保护的云端密文数据聚类分析数据挖掘服务.为保护用户数据隐私,用户将数据加密之后发布给云服务提供商,云服务提供商利用基于格的同态加密算法实现隐私保护的k-means、隐私保护层次聚类以及隐私保护DBSCAN数据挖掘服务,但云服务提供商并不能直接访问用户数据破坏用户隐私.与现有的隐私数据发布方法相比,隐私数据发布基于格的最接近向量困难问题(CVP)和最短向量困难问题(SVP)具有很高的安全性.同时,有效保持了密文数据间距离的精确性.与现有研究相比,挖掘结果也具有更高的精确性和可用性.对方法的安全性进行了理论分析,并设计实验对提出的隐私保护数据挖掘方法效率进行评估,实验结果表明,提出的基于格的隐私保护数据挖掘算法与现有的方法相比具有更高的数据分析精确性和计算效率. 展开更多
关键词 数据挖掘 隐私保护 隐私保护的数据挖掘 基于格的加密
下载PDF
利用PCA增强随机化隐私数据保护方法
7
作者 温晗 林怀忠 《计算机应用与软件》 CSCD 北大核心 2008年第2期261-263,共3页
基于随机化的数据扰乱及重构技术是数据挖掘中的隐私保护(Privacy-Preserving Data Mining,PPDM)领域中最重要的方法之一。但是,随机化难以消除由于属性变量本身相关性引起的数据泄漏。介绍了一种利用主成分分析(Principal Component An... 基于随机化的数据扰乱及重构技术是数据挖掘中的隐私保护(Privacy-Preserving Data Mining,PPDM)领域中最重要的方法之一。但是,随机化难以消除由于属性变量本身相关性引起的数据泄漏。介绍了一种利用主成分分析(Principal Component Anal-ysis,PCA)进行属性精简的增强随机化方法,降低了参与数据挖掘的属性数据间相关性,更好地保护了隐私数据。 展开更多
关键词 隐私保护的数据挖掘(ppdm) 随机化方法 主成分分析(PCA) 信息遗失率
下载PDF
A survey on federated learning:a perspective from multi-party computation 被引量:2
8
作者 Fengxia LIU Zhiming ZHENG +2 位作者 Yexuan SHI Yongxin TONG Yi ZHANG 《Frontiers of Computer Science》 SCIE EI CSCD 2024年第1期93-103,共11页
Federated learning is a promising learning paradigm that allows collaborative training of models across multiple data owners without sharing their raw datasets.To enhance privacy in federated learning,multi-party comp... Federated learning is a promising learning paradigm that allows collaborative training of models across multiple data owners without sharing their raw datasets.To enhance privacy in federated learning,multi-party computation can be leveraged for secure communication and computation during model training.This survey provides a comprehensive review on how to integrate mainstream multi-party computation techniques into diverse federated learning setups for guaranteed privacy,as well as the corresponding optimization techniques to improve model accuracy and training efficiency.We also pinpoint future directions to deploy federated learning to a wider range of applications. 展开更多
关键词 sfederated learning multi-party ycomputation privacy-preserving data mining distributed learning
原文传递
基于隐私保护的决策树模型 被引量:2
9
作者 方炜炜 杨炳儒 +1 位作者 杨君 周长胜 《模式识别与人工智能》 EI CSCD 北大核心 2010年第6期766-771,共6页
在分布式环境下,实现隐私保护的数据挖掘,已成为该领域的研究热点.文中着重研究在垂直分布数据中,实现隐私保护的决策树分类模型.该模型创建新型的隐私保护决策树,即由在茫然半诚实方存储的全局决策表和各站点存储的局部决策树组成,并... 在分布式环境下,实现隐私保护的数据挖掘,已成为该领域的研究热点.文中着重研究在垂直分布数据中,实现隐私保护的决策树分类模型.该模型创建新型的隐私保护决策树,即由在茫然半诚实方存储的全局决策表和各站点存储的局部决策树组成,并结合索引数组和秘密数据比较协议,实现在不泄漏原始信息的前提下决策树的生成和分类.经过理论分析和实验验证,证明该模型具有较好的安全性、准确性和适用性. 展开更多
关键词 隐私保护数据挖掘(ppdm) 决策树 垂直分布
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部