All-inorganic CsPbIBr_(2) perovskite has attracted widespread attention in photovoltaic and other optoelectronic devices because of its superior thermal stability.However,the deposition of high-quality solutionprocess...All-inorganic CsPbIBr_(2) perovskite has attracted widespread attention in photovoltaic and other optoelectronic devices because of its superior thermal stability.However,the deposition of high-quality solutionprocessed CsPbIBr_(2) perovskite films with large thicknesses remains challenging.Here,we develop a triple-component precursor(TCP) by employing lead bromide,lead iodide,and cesium bromide,to replace the most commonly used double-component precursor(DCP) consisting of lead bromide and cesium iodide.Remarkably,the TCP system significantly increases the solution concentration to 1.3 M,leading to a larger film thickness(~390 nm) and enhanced light absorption.The resultant CsPbIBr_(2) films were evaluated in planar n-i-p structured solar cells,which exhibit a considerably higher optimal photocurrent density of 11.50 mA cm^(-2) in comparison to that of DCP-based devices(10.69 mA cm^(-2)).By adopting an organic surface passivator,the maximum device efficiency using TCP is further boosted to a record efficiency of 12.8% for CsPbIBr_(2) perovskite solar cells.展开更多
Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme hetero...Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies(VO,Zn-ZnO/ZnS)is rationally constructed via ion-exchange and calcination treatments.In such a photocatalytic system,the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption.Moreover,the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes,respectively,which are beneficial for promoting the photo-induced carrier separation.Meanwhile,the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity.As expected,the optimized VO,Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H_(2) production rate of 160.91 mmol g^(-1)h^(-1),approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS,respectively.Simultaneously,the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier.This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar-to-fuel energy conversion.展开更多
The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform int...The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties.Here,we synthesized Bi_(2−x)Sb_(x)Te_(3)(x=0,0.1,0.2,0.4)nanoflakes using a hydrothermal method,and prepared Bi_(2−x)Sb_(x)Te_(3) thin films with predominantly(0001)interfaces by stacking the nanoflakes through spin coating.The influence of the annealing temperature and Sb content on the(0001)interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy.Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the(0001)interface.As such it enhances interfacial connectivity and improves the electrical transport properties.Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient.Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient,the maximum power factor of the Bi_(1.8)Sb_(0.2)Te_(3) nanoflake films reaches 1.72 mW m^(−1)K^(−2),which is 43%higher than that of a pure Bi_(2)Te_(3) thin film.展开更多
The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate per...The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate performance impede their further development in practical applications.Herein,we devised a wet chemical precipitation method to deposit an amorphous aluminum phosphate(AlPO_(4),denoted as AP)protective layer onto the surface of P2-type Na_(0.55)Ni_(0.1)Co_(0.7)Mn_(0.8)O_(2)(NCM@AP).The resulting NCM@5AP electrode,with a 5 wt%coating,exhibits extended cycle life(capacity retention of78.4%after 200 cycles at 100 mA g^(-1))and superior rate performance(98 mA h g^(-1)at 500 mA g^(-1))compared to pristine NCM.Moreover,our investigation provides comprehensive insights into the phase stability and active Na^(+)ion kinetics in the NCM@5AP composite electrode,shedding light on the underlying mechanisms responsible for the enhanced performance observed in the coated electrode.展开更多
Layered transition metal dichalcogenides are promising candidates for sodium storage but suffering from low intrinsic electronic conductivity and limited interlayer spacing for fast electron/ion transport,which restri...Layered transition metal dichalcogenides are promising candidates for sodium storage but suffering from low intrinsic electronic conductivity and limited interlayer spacing for fast electron/ion transport,which restricts their high-rate capability and cycling stability.In this work,rGO@MoSe_(2)/NAC hierarchical architectures,consisting of conductive reduced graphene oxide(rGO)supported by hollow nanospheres that are rolled from superlattices of alternatively overlapped MoSe_(2)and N-doped amorphous carbon(NAC)monolayers,are synthesized as a highperformance sodium storage anode.Theoretical calculations reveal the intercalation of NAC monolayer between two adjacent MoSe_(2)monolayers improving electronic conductivity of MoSe_(2)in both surface and internal bulk to fully accelerate electron transport and enhance Naþadsorption.The interoverlapped MoSe_(2)/NAC superlattice featuring a wide interlayer expansion(72.3%)of MoSe_(2)dramatically decreases Naþdiffusion barriers for fast insertion/extraction.Moreover,the hollow nanospheres and the rGO conductive network contribute to a robust hiberarchy that can well release internal stress and buffer the volume expansion,thereby enabling outstanding structural stability.Consequently,the rGO@MoSe_(2)/NAC anode exhibits excellent high-rate capability of 194 mAh g^(-1)and ultralong cyclability of 12000 cycles with a low capacity fading rate of 0.0038%per cycle at an ultra-high current of 50 A g^(-)1,delivering the best high-rate cycling performance to date.Remarkably,the Na_(3)V_(2)(PO_(4))_(3)||rGO@MoSe_(2)/NAC full cells also present outstanding cycling stability(600 cycles)at 10C rate,which proves the great potential in fast-charging applications.展开更多
Ferroelectric HfO_(2)has attracted much attention owing to its superior ferroelectricity at an ultra-thin thickness and good compatibility with Si-based complementary metal-oxide-semiconductor(CMOS)technology.However,...Ferroelectric HfO_(2)has attracted much attention owing to its superior ferroelectricity at an ultra-thin thickness and good compatibility with Si-based complementary metal-oxide-semiconductor(CMOS)technology.However,the crystallization of polar orthorhombic phase(o-phase)HfO_(2)is less competitive,which greatly limits the ferroelectricity of the as-obtained ferroelectric HfO_(2)thin films.Fortunately,the crystallization of o-phase HfO_(2)can be thermodynamically modulated via interfacial stress engineering.In this paper,the growth of improved ferroelectric Al doped HfO_(2)(HfO_(2):Al)thin films on(111)-oriented Si substrate has been reported.Structural analysis has suggested that nonpolar monoclinic HfO_(2):Al grown on(111)-oriented Si substrate suffered from a strong compressive strain,which promoted the crystallization of(111)-oriented o-phase HfO_(2)in the as-grown HfO_(2):Al thin films.In addition,the in-plane lattice of(111)-oriented Si substrate matches well with that of(111)-oriented o-phase HfO_(2),which further thermally stabilizes the o-phase HfO_(2).Accordingly,an improved ferroelectricity with a remnant polarization(2P_(r))of 26.7C/cm^(2) has been obtained.The results shown in this work provide a simple way toward the preparation of improved ferroelectric HfO_(2)thin films.展开更多
In this work,a PEDOT:PSS/Sn:α-Ga_(2)O_(3) hybrid heterojunction diode(HJD)photodetector was fabricated by spin-coat-ing highly conductive PEDOT:PSS aqueous solution on the mist chemical vapor deposition(Mist-CVD)grow...In this work,a PEDOT:PSS/Sn:α-Ga_(2)O_(3) hybrid heterojunction diode(HJD)photodetector was fabricated by spin-coat-ing highly conductive PEDOT:PSS aqueous solution on the mist chemical vapor deposition(Mist-CVD)grown Sn:α-Ga_(2)O_(3) film.This approach provides a facile and low-cost p-PEDOT:PSS/n-Sn:α-Ga_(2)O_(3) spin-coating method that facilitates self-powering per-formance through p-n junction formation.A typical type-Ⅰheterojunction is formed at the interface of Sn:α-Ga_(2)O_(3) film and PEDOT:PSS,and contributes to a significant photovoltaic effect with an open-circuit voltage(Voc)of 0.4 V under the 254 nm ultra-violet(UV)light.When operating in self-powered mode,the HJD exhibits excellent photo-response performance including an outstanding photo-current of 10.9 nA,a rapid rise/decay time of 0.38/0.28 s,and a large on/off ratio of 91.2.Additionally,the HJD also possesses excellent photo-detection performance with a high responsivity of 5.61 mA/W and a good detectivity of 1.15×1011 Jones at 0 V bias under 254 nm UV light illumination.Overall,this work may explore the potential range of self-pow-ered and high-performance UV photodetectors.展开更多
The issues of reducing CO_2 levels in the atmo-sphere, sustainably utilizing natural mineral resources,and dealing with indus trial waste offer challenging opportunities for sustainable development in energy and the e...The issues of reducing CO_2 levels in the atmo-sphere, sustainably utilizing natural mineral resources,and dealing with indus trial waste offer challenging opportunities for sustainable development in energy and the environment. The latest advances in CO_2 mineralization technology involving natural minerals and industrial waste are summarized in this paper, with great emphasis on the advancement of fundamental science, economic evaluation, and engineering applications. We discuss several lead-ing large-scale CO_2 mineralization methodologies from a techn ical and engineering-science perspective. For each technology option, we give an overview of the technical parameters, reaction pathway, reactivity, procedural scheme, and laboratorial and pilot devices. Furthermore, we present a discussion of each technology based on experimental results and the literature. Finally, current gaps in knowledge are identified in the conclusion, and an overview of the challenges and opportunities for future research in this field is provided.展开更多
Series of heterogeneous interfacial engineered TiO2(C-TiO2) with controllable carbon content were facilely synthesized by incipient-wet impregnation using glucose and subsequent thermal carbonization. The obtained C-T...Series of heterogeneous interfacial engineered TiO2(C-TiO2) with controllable carbon content were facilely synthesized by incipient-wet impregnation using glucose and subsequent thermal carbonization. The obtained C-TiO2 were used as catalytic supports to load Pd nanoparticles for H2 O2 direct synthesis from H2 and O2. The as-prepared samples were systematically studied by transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS), air isothermal microcalorimeter, temperature-programmed reduction of H2(H2-TPR), and so on. The catalytic results showed that H2 O2 productivity and H2O2 selectivity of Pd/C-TiO2 firstly rose with increasing carbon content and then declined. Pd/C-TiO2 catalyst with 1.89 wt% of carbon content showed the best catalytic performance that had 61.2% of selectivity and 2192 mmol H2O2/g Pd/h of productivity, which were significantly better than those of pristine Pd/TiO2(45.2% and 1827 mmol H2O2/g Pd/h). Various characterization results displayed that the carbon species were heterogeneously dispersed on TiO2 surface. Moreover, no obvious geometric transformation in supports and Pd nanoparticles were observed among different catalysts. The superficial hydrophobicity of Pd/C-TiO2 was gradually promoted with increasing carbon content, which led to the corresponding decrease in adsorption energy of H2O2 with catalysts. According to structure-performance relationship analyses, the heterogeneous interfacial engineering of carbon could maintain the interaction of Pd nanoparticles with TiO2 and simultaneously accelerate the H2O2 desorption. Both factors further determined the excellent H2O2 direct synthesis performance of Pd/C-TiO2.展开更多
基金The authors acknowledge the financial support by the National Natural Science Foundation of China(52161145408 and 21975038)the Research and Innovation Team Project of Dalian University of Technology(DUT2022TB10)+2 种基金the Fundamental Research Funds for the Central Universities(DUT22QN213)the Innovation Technology Fund(MRP/040/21X)the Green Technology Fund(GTF202020164)for their financial support。
文摘All-inorganic CsPbIBr_(2) perovskite has attracted widespread attention in photovoltaic and other optoelectronic devices because of its superior thermal stability.However,the deposition of high-quality solutionprocessed CsPbIBr_(2) perovskite films with large thicknesses remains challenging.Here,we develop a triple-component precursor(TCP) by employing lead bromide,lead iodide,and cesium bromide,to replace the most commonly used double-component precursor(DCP) consisting of lead bromide and cesium iodide.Remarkably,the TCP system significantly increases the solution concentration to 1.3 M,leading to a larger film thickness(~390 nm) and enhanced light absorption.The resultant CsPbIBr_(2) films were evaluated in planar n-i-p structured solar cells,which exhibit a considerably higher optimal photocurrent density of 11.50 mA cm^(-2) in comparison to that of DCP-based devices(10.69 mA cm^(-2)).By adopting an organic surface passivator,the maximum device efficiency using TCP is further boosted to a record efficiency of 12.8% for CsPbIBr_(2) perovskite solar cells.
文摘Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies(VO,Zn-ZnO/ZnS)is rationally constructed via ion-exchange and calcination treatments.In such a photocatalytic system,the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption.Moreover,the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes,respectively,which are beneficial for promoting the photo-induced carrier separation.Meanwhile,the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity.As expected,the optimized VO,Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H_(2) production rate of 160.91 mmol g^(-1)h^(-1),approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS,respectively.Simultaneously,the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier.This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar-to-fuel energy conversion.
基金supported by the National Natural Science Foundation of China(52272235)supported by the Fundamental Research Funds for the Central Universities(WUT:2021III016GX).
文摘The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties.Here,we synthesized Bi_(2−x)Sb_(x)Te_(3)(x=0,0.1,0.2,0.4)nanoflakes using a hydrothermal method,and prepared Bi_(2−x)Sb_(x)Te_(3) thin films with predominantly(0001)interfaces by stacking the nanoflakes through spin coating.The influence of the annealing temperature and Sb content on the(0001)interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy.Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the(0001)interface.As such it enhances interfacial connectivity and improves the electrical transport properties.Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient.Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient,the maximum power factor of the Bi_(1.8)Sb_(0.2)Te_(3) nanoflake films reaches 1.72 mW m^(−1)K^(−2),which is 43%higher than that of a pure Bi_(2)Te_(3) thin film.
基金financially supported by the Australian Research Council(ARC) through the Future Fellowship(FT180100705)the financial support from China Scholarship Council+3 种基金the support from UTS-HUST Key Technology Partner Seed Fundthe support from Open Project of State Key Laboratory of Advanced Special Steel,the Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2021-04)the Science and Technology Commission of Shanghai Municipality(22010500400)“Joint International Laboratory on Environmental and Energy Frontier Materials”and“Innovation Research Team of High–Level Local Universities in Shanghai”in Shanghai University。
文摘The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate performance impede their further development in practical applications.Herein,we devised a wet chemical precipitation method to deposit an amorphous aluminum phosphate(AlPO_(4),denoted as AP)protective layer onto the surface of P2-type Na_(0.55)Ni_(0.1)Co_(0.7)Mn_(0.8)O_(2)(NCM@AP).The resulting NCM@5AP electrode,with a 5 wt%coating,exhibits extended cycle life(capacity retention of78.4%after 200 cycles at 100 mA g^(-1))and superior rate performance(98 mA h g^(-1)at 500 mA g^(-1))compared to pristine NCM.Moreover,our investigation provides comprehensive insights into the phase stability and active Na^(+)ion kinetics in the NCM@5AP composite electrode,shedding light on the underlying mechanisms responsible for the enhanced performance observed in the coated electrode.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.51972092 and 52271208)。
文摘Layered transition metal dichalcogenides are promising candidates for sodium storage but suffering from low intrinsic electronic conductivity and limited interlayer spacing for fast electron/ion transport,which restricts their high-rate capability and cycling stability.In this work,rGO@MoSe_(2)/NAC hierarchical architectures,consisting of conductive reduced graphene oxide(rGO)supported by hollow nanospheres that are rolled from superlattices of alternatively overlapped MoSe_(2)and N-doped amorphous carbon(NAC)monolayers,are synthesized as a highperformance sodium storage anode.Theoretical calculations reveal the intercalation of NAC monolayer between two adjacent MoSe_(2)monolayers improving electronic conductivity of MoSe_(2)in both surface and internal bulk to fully accelerate electron transport and enhance Naþadsorption.The interoverlapped MoSe_(2)/NAC superlattice featuring a wide interlayer expansion(72.3%)of MoSe_(2)dramatically decreases Naþdiffusion barriers for fast insertion/extraction.Moreover,the hollow nanospheres and the rGO conductive network contribute to a robust hiberarchy that can well release internal stress and buffer the volume expansion,thereby enabling outstanding structural stability.Consequently,the rGO@MoSe_(2)/NAC anode exhibits excellent high-rate capability of 194 mAh g^(-1)and ultralong cyclability of 12000 cycles with a low capacity fading rate of 0.0038%per cycle at an ultra-high current of 50 A g^(-)1,delivering the best high-rate cycling performance to date.Remarkably,the Na_(3)V_(2)(PO_(4))_(3)||rGO@MoSe_(2)/NAC full cells also present outstanding cycling stability(600 cycles)at 10C rate,which proves the great potential in fast-charging applications.
基金Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Tech-nology,China(Grant No.2020B1212030010)Project of Faculty of Agricultural Equipment of Jiangsu University (Grant No. NZXB20210202) are acknowledged。
文摘Ferroelectric HfO_(2)has attracted much attention owing to its superior ferroelectricity at an ultra-thin thickness and good compatibility with Si-based complementary metal-oxide-semiconductor(CMOS)technology.However,the crystallization of polar orthorhombic phase(o-phase)HfO_(2)is less competitive,which greatly limits the ferroelectricity of the as-obtained ferroelectric HfO_(2)thin films.Fortunately,the crystallization of o-phase HfO_(2)can be thermodynamically modulated via interfacial stress engineering.In this paper,the growth of improved ferroelectric Al doped HfO_(2)(HfO_(2):Al)thin films on(111)-oriented Si substrate has been reported.Structural analysis has suggested that nonpolar monoclinic HfO_(2):Al grown on(111)-oriented Si substrate suffered from a strong compressive strain,which promoted the crystallization of(111)-oriented o-phase HfO_(2)in the as-grown HfO_(2):Al thin films.In addition,the in-plane lattice of(111)-oriented Si substrate matches well with that of(111)-oriented o-phase HfO_(2),which further thermally stabilizes the o-phase HfO_(2).Accordingly,an improved ferroelectricity with a remnant polarization(2P_(r))of 26.7C/cm^(2) has been obtained.The results shown in this work provide a simple way toward the preparation of improved ferroelectric HfO_(2)thin films.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFB3605404)the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos.62204125,62305171,62204126,and 62304113)+3 种基金the Joints Fund of the National Natural Science Foundation of China (Grant No.U23A20349)the Natural Science Foundation of Jiangsu Province (Grant No.BK20230361)the Natural Science Research Startup Foundation of Recuring Talents of Nanjing University of Posts and Telecommunications (Grant No.XK1060921119)the Jiangsu Provincial Team of Innovation and Entrepreneurship (Grant No.JSSCTD202351).
文摘In this work,a PEDOT:PSS/Sn:α-Ga_(2)O_(3) hybrid heterojunction diode(HJD)photodetector was fabricated by spin-coat-ing highly conductive PEDOT:PSS aqueous solution on the mist chemical vapor deposition(Mist-CVD)grown Sn:α-Ga_(2)O_(3) film.This approach provides a facile and low-cost p-PEDOT:PSS/n-Sn:α-Ga_(2)O_(3) spin-coating method that facilitates self-powering per-formance through p-n junction formation.A typical type-Ⅰheterojunction is formed at the interface of Sn:α-Ga_(2)O_(3) film and PEDOT:PSS,and contributes to a significant photovoltaic effect with an open-circuit voltage(Voc)of 0.4 V under the 254 nm ultra-violet(UV)light.When operating in self-powered mode,the HJD exhibits excellent photo-response performance including an outstanding photo-current of 10.9 nA,a rapid rise/decay time of 0.38/0.28 s,and a large on/off ratio of 91.2.Additionally,the HJD also possesses excellent photo-detection performance with a high responsivity of 5.61 mA/W and a good detectivity of 1.15×1011 Jones at 0 V bias under 254 nm UV light illumination.Overall,this work may explore the potential range of self-pow-ered and high-performance UV photodetectors.
基金finance support of the Ministry of Science and Technology (State Key Research Plan, 2013BAC12B00)the National Natural Science Foundation of China (21336004 and 51254002)
文摘The issues of reducing CO_2 levels in the atmo-sphere, sustainably utilizing natural mineral resources,and dealing with indus trial waste offer challenging opportunities for sustainable development in energy and the environment. The latest advances in CO_2 mineralization technology involving natural minerals and industrial waste are summarized in this paper, with great emphasis on the advancement of fundamental science, economic evaluation, and engineering applications. We discuss several lead-ing large-scale CO_2 mineralization methodologies from a techn ical and engineering-science perspective. For each technology option, we give an overview of the technical parameters, reaction pathway, reactivity, procedural scheme, and laboratorial and pilot devices. Furthermore, we present a discussion of each technology based on experimental results and the literature. Finally, current gaps in knowledge are identified in the conclusion, and an overview of the challenges and opportunities for future research in this field is provided.
基金supported by the National Natural Science Foundation of China(21878143,21476106,21838004)Joint Re-search Fund for Overseas Chinese Scholars and Scholars in Hong Kong and Macao Young Scholars(21729601)+1 种基金the fund of State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201702)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)~~
文摘Series of heterogeneous interfacial engineered TiO2(C-TiO2) with controllable carbon content were facilely synthesized by incipient-wet impregnation using glucose and subsequent thermal carbonization. The obtained C-TiO2 were used as catalytic supports to load Pd nanoparticles for H2 O2 direct synthesis from H2 and O2. The as-prepared samples were systematically studied by transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS), air isothermal microcalorimeter, temperature-programmed reduction of H2(H2-TPR), and so on. The catalytic results showed that H2 O2 productivity and H2O2 selectivity of Pd/C-TiO2 firstly rose with increasing carbon content and then declined. Pd/C-TiO2 catalyst with 1.89 wt% of carbon content showed the best catalytic performance that had 61.2% of selectivity and 2192 mmol H2O2/g Pd/h of productivity, which were significantly better than those of pristine Pd/TiO2(45.2% and 1827 mmol H2O2/g Pd/h). Various characterization results displayed that the carbon species were heterogeneously dispersed on TiO2 surface. Moreover, no obvious geometric transformation in supports and Pd nanoparticles were observed among different catalysts. The superficial hydrophobicity of Pd/C-TiO2 was gradually promoted with increasing carbon content, which led to the corresponding decrease in adsorption energy of H2O2 with catalysts. According to structure-performance relationship analyses, the heterogeneous interfacial engineering of carbon could maintain the interaction of Pd nanoparticles with TiO2 and simultaneously accelerate the H2O2 desorption. Both factors further determined the excellent H2O2 direct synthesis performance of Pd/C-TiO2.