A method for reliability analysis of the competing failure with the probabilistic failure threshold value not the fixed threshold value is presented, which involves the random shocks and the degradation is independent...A method for reliability analysis of the competing failure with the probabilistic failure threshold value not the fixed threshold value is presented, which involves the random shocks and the degradation is independent and dependent respectively. Specifically, for the dependent condition, the effect due to the random shocks on the degradation is considered with a damage factor. In addition, the dependent competing failure model is applied to the reliability analysis of the k-out-of-n systems. Finally, two studied cases are presented to illustrate the proposed method, and the results show the proposed method is reasonable.展开更多
This paper considers the reliable control design for T-S fuzzy systems with probabilistic actuators faults and random time-varying delays. The faults of each actuator occurs randomly and its failure rates are governed...This paper considers the reliable control design for T-S fuzzy systems with probabilistic actuators faults and random time-varying delays. The faults of each actuator occurs randomly and its failure rates are governed by a set of unrelated random variables satisfying certain probabilistic distribution. In terms of the probabilistic failures of each actuator and time-varying random delays, new fault model is proposed. Based on the new fuzzy model, reliable controller is designed and sufficient conditions for the exponentially mean square stability (EMSS) of T-S fuzzy systems are derived by using Lyapunov functional method and linear matrix inequality (LMI) technique. It should be noted that the obtained criteria depend on not only the size of the delay, but also the probability distribution of it. Finally, a numerical example is given to show the effectiveness of the proposed method.展开更多
基金the Special Research Fund for the National Natural Science Foundation of China(No.11272082)the Fundamental Research Funds for the Central Universities(No.E022050205)the Open Research Fund of Key Laboratory of Fluid and Power Machinery of Xihua University(No.szjj2013-03)
文摘A method for reliability analysis of the competing failure with the probabilistic failure threshold value not the fixed threshold value is presented, which involves the random shocks and the degradation is independent and dependent respectively. Specifically, for the dependent condition, the effect due to the random shocks on the degradation is considered with a damage factor. In addition, the dependent competing failure model is applied to the reliability analysis of the k-out-of-n systems. Finally, two studied cases are presented to illustrate the proposed method, and the results show the proposed method is reasonable.
基金Supported by the National Natural Science Foundation of China(No.61403185 and 71301100)the China Postdoctoral Science Foundation(No.2014M561558 and 2014M551487)+5 种基金the Postdoctoral Science Foundation of Jiangsu Province(No.1401005A and 1301009A)major project supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.15KJA120001)six talent peaks project in Jiangsu Province(No.2015-DZXX-021)Qing-Lan Project,Collaborative Innovation Center for Modern Grain Circulation and Safetya Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Jiangsu Key Laboratory of Modern Logistics(Nanjing University of Finance&Economics)
文摘This paper considers the reliable control design for T-S fuzzy systems with probabilistic actuators faults and random time-varying delays. The faults of each actuator occurs randomly and its failure rates are governed by a set of unrelated random variables satisfying certain probabilistic distribution. In terms of the probabilistic failures of each actuator and time-varying random delays, new fault model is proposed. Based on the new fuzzy model, reliable controller is designed and sufficient conditions for the exponentially mean square stability (EMSS) of T-S fuzzy systems are derived by using Lyapunov functional method and linear matrix inequality (LMI) technique. It should be noted that the obtained criteria depend on not only the size of the delay, but also the probability distribution of it. Finally, a numerical example is given to show the effectiveness of the proposed method.