期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
PROBABILISTIC AND AVERAGE LINEAR WIDTHS OF SOBOLEV SPACE WITH GAUSSIAN MEASURE IN SPACE S_Q(T)(1≤Q≤∞)
1
作者 徐艳艳 陈广贵 +1 位作者 甘莹 许燕 《Acta Mathematica Scientia》 SCIE CSCD 2015年第2期495-507,共13页
Probabilistic linear (N, δ)-widths and p-average linear N-widths of Sobolev space W2^r(T), equipped with a Gaussian probability measure #, are studied in the metric of Sq (T) (1 ≤ Q ≤∞), and determined the... Probabilistic linear (N, δ)-widths and p-average linear N-widths of Sobolev space W2^r(T), equipped with a Gaussian probability measure #, are studied in the metric of Sq (T) (1 ≤ Q ≤∞), and determined the asymptotic equalities:λN,δ(W2^r(T),μ,Sq(T))={(N^-1)^r+p/2-1/q√1+1/N·ln1/δ, 1≤q≤2, (N^-1)^r+p/2-1/q(1+N^-1/q√ln1/δ),2〈q〈∞, (N^-1)^r+p/2√lnN/δ, q=∞,and λN^(a)(W2^r(T),μ,Sq(T))p={(N^-1)^r+p/2-1/q, 1≤q〈∞, (N^-1)^r+p/2-1/q√lnN, q=∞,where 0 〈 p 〈 ∞, δ∈ (0, 1/2], ρ 〉 1, and Sq(T) is a subspace of L1(T), in which the Fourier series is absolutely convergent in lq sense. 展开更多
关键词 probabilistic linear width Average linear width Gaussian measure Sobolevspace linear operator
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部