A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two ...A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two three-particle non-maximally entangled W states. An arbitrary three-particle state can be perfectly teleported probabilistically if the sender performs three generalized Bell-state measurements and sends to the two receivers the classical result of these measurements, and either one of the two receivers adopts an appropriate unitary transformation conditioned on the suitable measurement outcomes of the other receiver. All kinds of unitary transformations are given in detail.展开更多
A scheme for probabilistic teleporting an unknown two-particle state of general formation by partly pure entangled four-particle state is proposed. It is shown that after performing two Bell state measurements, proper...A scheme for probabilistic teleporting an unknown two-particle state of general formation by partly pure entangled four-particle state is proposed. It is shown that after performing two Bell state measurements, proper unitary transformation and the measurement on an auxiliary qubit, the unknown two-particle state of general formation, which was destroyed at one place, can be reconstructed at another place with certain probability.展开更多
In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second sche...In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second scheme,four non-maximally entangled particle pairs are considered as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both schemes, if a receiver adopts some appropriate unitary transformations. It is also shown that the successful probabilities of these two schemes are different.展开更多
The teleportation of an arbitrary n-particle state is proposed when n pairs of entangled particles are utilized as quantum channels. It can be successfully realized with a certain probability which is determined by th...The teleportation of an arbitrary n-particle state is proposed when n pairs of entangled particles are utilized as quantum channels. It can be successfully realized with a certain probability which is determined by the smallest coefficients of n entangled pairs. Using a Latin square of order 2n, explicit expressions of two unitary operations corresponding to different Bell-basis measurements performed by Alice can be obtained at the end of Bob.展开更多
Two simple schemes for probabilistic teleportation of an arbitrary unknown two-particle state using a non-maximally entangled EPR pair and a non-maximally entangled GHZ state as quantum channels are proposed. After re...Two simple schemes for probabilistic teleportation of an arbitrary unknown two-particle state using a non-maximally entangled EPR pair and a non-maximally entangled GHZ state as quantum channels are proposed. After receiving Alice's Bell state measurement results, Bob performs a collective unitary transformation on his inherent particles without introducing the auxiliary qubit. The original state can be probabilistically teleported. Meanwhile, quantum circuits for realization of successful teleportation are also presented.展开更多
A new representation of an arbitrary and unknown N-particle state is presented at first. As an application, a scheme for teleporting an arbitrary and unknown N-particle state is proposed when N pairs of two-particle n...A new representation of an arbitrary and unknown N-particle state is presented at first. As an application, a scheme for teleporting an arbitrary and unknown N-particle state is proposed when N pairs of two-particle non- maximally entangled states are utilized as quantum channels. After Alice (sender) makes Bell-state measurement on her particles, Bob (recipient) introduces an auxiliary particle and carries out appropriate unitary transformation on his particle and the auxiliary particle depending on classical information from Alice. Then, von Neumann measurement that confirms whether the teleportation succeeds or not is performed by Bob on the auxiliary particle. In order to complete the teleportation, another N-1 times operations need to be performed which are similar to the above ones. It can be successfully realized with a certain probability which is determined by the product of the smaller coefficients of non-maximally entangled pairs. All possible unitary transformations are given in detail.展开更多
This paper proposes a scheme for teleporting a kind of essential three-particle non-symmetric entangled state, which is much more valuable than a GHZ and W state for some applications in quantum information processing...This paper proposes a scheme for teleporting a kind of essential three-particle non-symmetric entangled state, which is much more valuable than a GHZ and W state for some applications in quantum information processing. In comparison with previous proposal of teleportation, the resources of entangled states as quantum channel and the number of classical messages required by our scheme can be cut down. Moreover, it is shown that there exists a class of transformations which ensure the success of this scheme, because the two-particle transformation performed by the receiver in the course of teleportation may be a generic two-particle operation instead of a control-NOT (CNOT) operation. In addition, all kinds of transformations performed by sender and receiver are given in detail.展开更多
The general scheme for teleportation of a multi-particle d-level quantumstate is presented when m pairs of partially entangled particles are utilized as quantum channels.The probabilistic teleportation can be achieved...The general scheme for teleportation of a multi-particle d-level quantumstate is presented when m pairs of partially entangled particles are utilized as quantum channels.The probabilistic teleportation can be achieved with a successful probability of Π from N=0 to d-1of (C_0~N)~2/d~M, which is determined by the smallest coefficients of each entangled channels.展开更多
Two schemes for teleporting an unknown one-particle state are proposed when a general W state is utilized as quantum channel. In the first scheme, after the sender (Alice) makes a Bell-state measurement on her parti...Two schemes for teleporting an unknown one-particle state are proposed when a general W state is utilized as quantum channel. In the first scheme, after the sender (Alice) makes a Bell-state measurement on her particles, the recipient (Bob) performs a Von Neumann measurement and introduces an auxiliary particle, and carries out a unitary transformation on his particle and the auxiliary particle, and performs a Von Neumann measurement on the auxiliary particle to confirm whether the teleportation succeeds or not. In the second scheme, the recipient (Bob) does not need to perform the first Von Neumann measurement or introduce the auxiliary particle, which is necessary in the first scheme. It is shown that the maxima/probabilities of successful teleportation of the two schemes are identical if the recipient (Bob) performs an appropriate unitary transformation and adopts a proper particle on which he recovers the quantum information of state to be teleported.展开更多
A Scheme for teleporting an unknown four-particle entangled state is proposed via entangled swapping. In this scheme, four pairs of entangled particles are used as quantum channel. It is shown that, if the four pairs ...A Scheme for teleporting an unknown four-particle entangled state is proposed via entangled swapping. In this scheme, four pairs of entangled particles are used as quantum channel. It is shown that, if the four pairs of particles are nonmaximally entangled, the teleportation can be successfully realized with certain probability if a receiver adopts some appropriate unitary transformations.展开更多
In this paper, two schemes for teleporting an unknown three-particle three-level entangled state are proposed. In the first scheme, two partial three-particle three-level entangled states are used as the quantum chann...In this paper, two schemes for teleporting an unknown three-particle three-level entangled state are proposed. In the first scheme, two partial three-particle three-level entangled states are used as the quantum channels, while in the second scheme, three two-particle three-level non-maximally entangled states are employed as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both two schemes, ira receiver adopts some appropriate unitary transformations. It is shown also that the successful probabilities of these two schemes are different.展开更多
We propose a protocol for controlled probabilistic teleportation of an unknown tripartite qutrit entangled state with two partial tripartite qutrit entangled states as the quantum channel. It is found that teleportati...We propose a protocol for controlled probabilistic teleportation of an unknown tripartite qutrit entangled state with two partial tripartite qutrit entangled states as the quantum channel. It is found that teleportation associated with the generalized qutrit Bell-basis measurement, the generalized qutrit π-state measurement and the generalized Hadamard operator in three-dimensional Hilbert space. We generalize the protocol for controlled probabilistic teleportation of an unknown k-particle qudit entangled state with a multi-particle qudit entangled state and a tripartite qudit entangled state as the quantum channel. We also calculate the classical communication cost required in both cases.展开更多
We present a scheme for realizing probabilistic teleportation of an unknown N-atom state via cavity QED. This scheme requires only a nonmaximally entangled pair to be used as a quantum channel, so the requirement of e...We present a scheme for realizing probabilistic teleportation of an unknown N-atom state via cavity QED. This scheme requires only a nonmaximally entangled pair to be used as a quantum channel, so the requirement of entanglement is reduced. In addition, our scheme does not involve the Bell-state measurement and is insensitive to the cavity decay, which is important from the experimental point of view. If the quantum channel is a two-atom maximally entangled state, teleportation of an unknown N-atom state can be realized by a simpler scheme via cavity QED.展开更多
The scheme for probabilistic teleportation of an arbitrary three-particle state is proposed. By using single qubit gate and three two-qubit gates, efficient quantum logic networks for probabilistic teleportation of an...The scheme for probabilistic teleportation of an arbitrary three-particle state is proposed. By using single qubit gate and three two-qubit gates, efficient quantum logic networks for probabilistic teleportation of an arbitrary three-particle state are constructed.展开更多
In the context of microwave cavity QED, this paper proposes a new scheme for teleportation of an arbitrary pure state of two atoms. The scheme is very different from the previous ones which achieve the integrated stat...In the context of microwave cavity QED, this paper proposes a new scheme for teleportation of an arbitrary pure state of two atoms. The scheme is very different from the previous ones which achieve the integrated state measurement, it deals in a probabilistic but simplified way. In the scheme, no additional atoms are involved and thus only two atoms are required to be detected. The scheme can also be used for the teleportation of arbitrary pure states of many atoms or two-mode cavities.展开更多
A scheme for teleporting an unknown three-particle GHZ state from a sender to either one of two receivers is proposed. In this scheme, the quantum channel is composed of two non-maximally three-particle entangled W st...A scheme for teleporting an unknown three-particle GHZ state from a sender to either one of two receivers is proposed. In this scheme, the quantum channel is composed of two non-maximally three-particle entangled W states. An unknown three-particle GHZ state can be perfectly teleported probabilistically if the sender performs two generalized Bell-state measurements and the Hadamard operation while either one of two receivers introduces an ancillary particle which is one of the final three particle constituting the teleported state, then performs the controlled-not operation with the ancillary particle as the target bit and introduces an appropriate unitary transformation with the help of the other receiver's simple measurements. All kinds of unitary transformations are given in detail. The present scheme may be directly generalized to teleport an unknown multiparticle GHZ state via two three-particle entangled W states used as the quantum channel.展开更多
We study the entanglement of the para-Bose entangled coherent states by adopting the entanglement of formation and propose a scheme of probabilistic teleportation via para-Bose entangled coherent states. It is found t...We study the entanglement of the para-Bose entangled coherent states by adopting the entanglement of formation and propose a scheme of probabilistic teleportation via para-Bose entangled coherent states. It is found that the mean fidelity of the scheme increases with the decrease of the para-Bose parameter ho in the case of non-maximally entangled para-Bose entangled coherent states.展开更多
A probabilistic teleportation scheme for atomic stats via cavity QED [Phys. Rev. A 70 (2004) 054303] is revisited and accordingly some improvements are made.
We propose a novel scheme to probabilistically teleport an unknown two-level quantum state when the information of the partially entangled state is only available for the sender. This is in contrast with the fact that...We propose a novel scheme to probabilistically teleport an unknown two-level quantum state when the information of the partially entangled state is only available for the sender. This is in contrast with the fact that the receiver must know the non-maximally entangled state in previous typical schemes for the teleportation. Additionally, we illustrate two potential applications of the novel scheme for probabilistic teleportation from a sender to a receiver with the help of an assistant, who plays distinct roles under different communication conditions, and our results show that the novel proposal could enlarge the applied range of probabilistic teleportation.展开更多
We propose a novel scheme to probabilistically transmit an arbitrary unknown two-qubit quantum state via Positive Operator-Valued Measurement with the help of two partially entangled states. In this scheme, the telepo...We propose a novel scheme to probabilistically transmit an arbitrary unknown two-qubit quantum state via Positive Operator-Valued Measurement with the help of two partially entangled states. In this scheme, the teleportation with two senders and two receives can be realized when the information of non-maximally entangled states is only available for the senders. Furthermore, the concrete implementation processes of this proposal are presented, meanwhile the classical communication cost and the successful probability of our scheme are calculated.展开更多
文摘A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two three-particle non-maximally entangled W states. An arbitrary three-particle state can be perfectly teleported probabilistically if the sender performs three generalized Bell-state measurements and sends to the two receivers the classical result of these measurements, and either one of the two receivers adopts an appropriate unitary transformation conditioned on the suitable measurement outcomes of the other receiver. All kinds of unitary transformations are given in detail.
文摘A scheme for probabilistic teleporting an unknown two-particle state of general formation by partly pure entangled four-particle state is proposed. It is shown that after performing two Bell state measurements, proper unitary transformation and the measurement on an auxiliary qubit, the unknown two-particle state of general formation, which was destroyed at one place, can be reconstructed at another place with certain probability.
文摘In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second scheme,four non-maximally entangled particle pairs are considered as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both schemes, if a receiver adopts some appropriate unitary transformations. It is also shown that the successful probabilities of these two schemes are different.
文摘The teleportation of an arbitrary n-particle state is proposed when n pairs of entangled particles are utilized as quantum channels. It can be successfully realized with a certain probability which is determined by the smallest coefficients of n entangled pairs. Using a Latin square of order 2n, explicit expressions of two unitary operations corresponding to different Bell-basis measurements performed by Alice can be obtained at the end of Bob.
基金The project supported by the Natural Science Foundation of Jiangsu Province of China under Grant No. Q1108404
文摘Two simple schemes for probabilistic teleportation of an arbitrary unknown two-particle state using a non-maximally entangled EPR pair and a non-maximally entangled GHZ state as quantum channels are proposed. After receiving Alice's Bell state measurement results, Bob performs a collective unitary transformation on his inherent particles without introducing the auxiliary qubit. The original state can be probabilistically teleported. Meanwhile, quantum circuits for realization of successful teleportation are also presented.
文摘A new representation of an arbitrary and unknown N-particle state is presented at first. As an application, a scheme for teleporting an arbitrary and unknown N-particle state is proposed when N pairs of two-particle non- maximally entangled states are utilized as quantum channels. After Alice (sender) makes Bell-state measurement on her particles, Bob (recipient) introduces an auxiliary particle and carries out appropriate unitary transformation on his particle and the auxiliary particle depending on classical information from Alice. Then, von Neumann measurement that confirms whether the teleportation succeeds or not is performed by Bob on the auxiliary particle. In order to complete the teleportation, another N-1 times operations need to be performed which are similar to the above ones. It can be successfully realized with a certain probability which is determined by the product of the smaller coefficients of non-maximally entangled pairs. All possible unitary transformations are given in detail.
基金Project supported by the National Natural Science Foundation of China (Grants No 60373059), the National Laboratory for Modern Communications Science Foundation of China (Grant No 51436020103DZ4001), the Major Research Plan of the National Natural Science Foundation of China (Grant No 90604023), the National Research Foundation for the Doctoral Program of Higher Education of China (Grant No 20040013007), and the ISN 0pen Foundation.
文摘This paper proposes a scheme for teleporting a kind of essential three-particle non-symmetric entangled state, which is much more valuable than a GHZ and W state for some applications in quantum information processing. In comparison with previous proposal of teleportation, the resources of entangled states as quantum channel and the number of classical messages required by our scheme can be cut down. Moreover, it is shown that there exists a class of transformations which ensure the success of this scheme, because the two-particle transformation performed by the receiver in the course of teleportation may be a generic two-particle operation instead of a control-NOT (CNOT) operation. In addition, all kinds of transformations performed by sender and receiver are given in detail.
文摘The general scheme for teleportation of a multi-particle d-level quantumstate is presented when m pairs of partially entangled particles are utilized as quantum channels.The probabilistic teleportation can be achieved with a successful probability of Π from N=0 to d-1of (C_0~N)~2/d~M, which is determined by the smallest coefficients of each entangled channels.
文摘Two schemes for teleporting an unknown one-particle state are proposed when a general W state is utilized as quantum channel. In the first scheme, after the sender (Alice) makes a Bell-state measurement on her particles, the recipient (Bob) performs a Von Neumann measurement and introduces an auxiliary particle, and carries out a unitary transformation on his particle and the auxiliary particle, and performs a Von Neumann measurement on the auxiliary particle to confirm whether the teleportation succeeds or not. In the second scheme, the recipient (Bob) does not need to perform the first Von Neumann measurement or introduce the auxiliary particle, which is necessary in the first scheme. It is shown that the maxima/probabilities of successful teleportation of the two schemes are identical if the recipient (Bob) performs an appropriate unitary transformation and adopts a proper particle on which he recovers the quantum information of state to be teleported.
文摘A Scheme for teleporting an unknown four-particle entangled state is proposed via entangled swapping. In this scheme, four pairs of entangled particles are used as quantum channel. It is shown that, if the four pairs of particles are nonmaximally entangled, the teleportation can be successfully realized with certain probability if a receiver adopts some appropriate unitary transformations.
基金The project supported by the Natural Science Foundation of Education Bureau of Jingsu Province of China under Grant No. 04KJB140014
文摘In this paper, two schemes for teleporting an unknown three-particle three-level entangled state are proposed. In the first scheme, two partial three-particle three-level entangled states are used as the quantum channels, while in the second scheme, three two-particle three-level non-maximally entangled states are employed as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both two schemes, ira receiver adopts some appropriate unitary transformations. It is shown also that the successful probabilities of these two schemes are different.
基金supported by the Natural Science Foundation of Education Bureau of Jiangsu Province of China under Grant No. 05K3D140035Program for Excellent Talents in Huaiyin Teachers College
文摘We propose a protocol for controlled probabilistic teleportation of an unknown tripartite qutrit entangled state with two partial tripartite qutrit entangled states as the quantum channel. It is found that teleportation associated with the generalized qutrit Bell-basis measurement, the generalized qutrit π-state measurement and the generalized Hadamard operator in three-dimensional Hilbert space. We generalize the protocol for controlled probabilistic teleportation of an unknown k-particle qudit entangled state with a multi-particle qudit entangled state and a tripartite qudit entangled state as the quantum channel. We also calculate the classical communication cost required in both cases.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574022), and the Funds of the Natural Science of Fujian Province, China (Grant No Z0512006).
文摘We present a scheme for realizing probabilistic teleportation of an unknown N-atom state via cavity QED. This scheme requires only a nonmaximally entangled pair to be used as a quantum channel, so the requirement of entanglement is reduced. In addition, our scheme does not involve the Bell-state measurement and is insensitive to the cavity decay, which is important from the experimental point of view. If the quantum channel is a two-atom maximally entangled state, teleportation of an unknown N-atom state can be realized by a simpler scheme via cavity QED.
文摘The scheme for probabilistic teleportation of an arbitrary three-particle state is proposed. By using single qubit gate and three two-qubit gates, efficient quantum logic networks for probabilistic teleportation of an arbitrary three-particle state are constructed.
基金Project supported by National Natural Science Foundation of China (Grant No 10674025), and National Natural Science Foun dation of Fujian Province of China (Grant No 2006J0235).
文摘In the context of microwave cavity QED, this paper proposes a new scheme for teleportation of an arbitrary pure state of two atoms. The scheme is very different from the previous ones which achieve the integrated state measurement, it deals in a probabilistic but simplified way. In the scheme, no additional atoms are involved and thus only two atoms are required to be detected. The scheme can also be used for the teleportation of arbitrary pure states of many atoms or two-mode cavities.
基金The project supported by National Natural Science Foundation of Chins under Grant No. 10574022 and the Natural Science Foundation of Fujian Province of China under Grant No. Z0512006
文摘A scheme for teleporting an unknown three-particle GHZ state from a sender to either one of two receivers is proposed. In this scheme, the quantum channel is composed of two non-maximally three-particle entangled W states. An unknown three-particle GHZ state can be perfectly teleported probabilistically if the sender performs two generalized Bell-state measurements and the Hadamard operation while either one of two receivers introduces an ancillary particle which is one of the final three particle constituting the teleported state, then performs the controlled-not operation with the ancillary particle as the target bit and introduces an appropriate unitary transformation with the help of the other receiver's simple measurements. All kinds of unitary transformations are given in detail. The present scheme may be directly generalized to teleport an unknown multiparticle GHZ state via two three-particle entangled W states used as the quantum channel.
基金The project supported by National Natural Science Foundation of China under Grant No.10174066
文摘We study the entanglement of the para-Bose entangled coherent states by adopting the entanglement of formation and propose a scheme of probabilistic teleportation via para-Bose entangled coherent states. It is found that the mean fidelity of the scheme increases with the decrease of the para-Bose parameter ho in the case of non-maximally entangled para-Bose entangled coherent states.
基金The project supported by National Natural Science Foundation of China under Grant No. 10304022, the Science-Technology Fund of Anhui Province for 0utstanding Youth under Grant No. 06042087, the General Fund of the Educational Committee of Anhui Province under Grant No. 2006KJ260B, and the Key Fund of the Ministry of Education of China under Grant No. 206063
文摘A probabilistic teleportation scheme for atomic stats via cavity QED [Phys. Rev. A 70 (2004) 054303] is revisited and accordingly some improvements are made.
基金Supported by the National Natural Science Foundation of China under Grant Nos.61134008,11074307,and 61273202
文摘We propose a novel scheme to probabilistically teleport an unknown two-level quantum state when the information of the partially entangled state is only available for the sender. This is in contrast with the fact that the receiver must know the non-maximally entangled state in previous typical schemes for the teleportation. Additionally, we illustrate two potential applications of the novel scheme for probabilistic teleportation from a sender to a receiver with the help of an assistant, who plays distinct roles under different communication conditions, and our results show that the novel proposal could enlarge the applied range of probabilistic teleportation.
基金Supported by the National Natural Science Foundation of China under Grant Nos.60974037,61134008,11074307,and 61273202
文摘We propose a novel scheme to probabilistically transmit an arbitrary unknown two-qubit quantum state via Positive Operator-Valued Measurement with the help of two partially entangled states. In this scheme, the teleportation with two senders and two receives can be realized when the information of non-maximally entangled states is only available for the senders. Furthermore, the concrete implementation processes of this proposal are presented, meanwhile the classical communication cost and the successful probability of our scheme are calculated.