[Objectives]This study was conducted to investigate the effects of adding compound probiotics on the growth performance and intestinal flora of Kunming mice.[Methods]Twelve healthy 2-week-old Kunming male mice with bo...[Objectives]This study was conducted to investigate the effects of adding compound probiotics on the growth performance and intestinal flora of Kunming mice.[Methods]Twelve healthy 2-week-old Kunming male mice with body weight of(11.09±0.43)g were selected.They were randomly divided into two treatment groups,namely blank control group(NC)and compound probiotics group(CB+LR+BS),with six mice in each group.The two groups were fed with commercial basal diet,and the compound probiotic experimental group was fed with basal diet supplemented with compound probiotics,in which the contents of Clostridium butyricum spores,Lactobacillus reuteri and Bacillus subtilis spores were 1×1010,1×1011 and 1×1010 CUF/kg,respectively.The body weight,feed intake and water intake of mice were counted every 4 d,and the experimental period was 13 d.On the 13 th day,the cecal contents of the mice were collected for analysis.[Results]There was no significant change in body weight and feed intake when compound probiotics were added to the diet.However,the addition of compound probiotics reduced the abundance of harmful bacteria such as Escherichia coli,urease-negative Helicobacter typhlonius and Salmonella enterica,while increasing the abundance of beneficial bacteria such as Anaerostipes hadrus,and the contents of IgG and IgM increased significantly(P<0.05).[Conclusions]In summary,the addition of compound probiotics could significantly improve the structure of intestinal microbial flora,increase the quantity of beneficial bacteria,reduce the quantity of harmful bacteria,and improve the immune function of mice.展开更多
One factor that shapes the establishment of early neonatal intestinal microbiota is environmental microbial exposure,and probiotic application has been shown to promote health and growth of piglets.Thus,this study hyp...One factor that shapes the establishment of early neonatal intestinal microbiota is environmental microbial exposure,and probiotic application has been shown to promote health and growth of piglets.Thus,this study hypothesized that environmental probiotic application in early days of life would be beneficial to newborn piglets.This study aimed to investigate the effect of spraying a compound probiotic fermented liquid(CPFL)into the living environment of piglets on their early growth performance and immunity.This work included 68 piglets,which were randomized into probiotic and control groups.Blood and fecal samples were collected at 0,3,7,14,and 21 days of age.Spraying CPFL significantly reshaped the microbiota composition of the delivery room environment,increased piglets’daily weight gain and weaning weight(P<0.001),and modulated piglets’serum cytokine levels(increases in Ig A,Ig G,and IL-10;decrease in IFN-γ;P<0.05 in each case)in piglets.Additionally,spraying CPFL during early days of life modified piglets’gut microbiota structure and diversity,increased the abundance of some potentially beneficial bacteria(such as Bacteroides uniformis,Butyricimonas virosa,Parabacteroides distasonis,and Phascolarctobacterium succinatutens)and decreased the abundance of Escherichia coli(P<0.05).Interestingly,CPFL application also significantly enhanced the gut microbial bioactive potential and levels of several serum metabolites involved in the metabolism of vitamins(B2,B3,B6,and E),medium/long-chain fatty acids(caproic,tetradecanoic,and peptadecanoic acids),and dicarboxylic acids(azelaic and sebacic acids).Our study demonstrated that spraying CPFL significantly could improve piglets’growth performance and immunity,and the beneficial effects are associated with changes in the gut microbiota and host metabolism.Our study has provided novel data for future development of probiotic-based health-promoting strategies and expanded our knowledge of probiotic application in animal husbandry.展开更多
基金Supported by China National University Student Innovation and Entrepreneurship Development Program(S202310553010)2023 Undergraduate Innovation and Entrepreneurship Training Program of Hunan University of Humanities,Science and Technology(14).
文摘[Objectives]This study was conducted to investigate the effects of adding compound probiotics on the growth performance and intestinal flora of Kunming mice.[Methods]Twelve healthy 2-week-old Kunming male mice with body weight of(11.09±0.43)g were selected.They were randomly divided into two treatment groups,namely blank control group(NC)and compound probiotics group(CB+LR+BS),with six mice in each group.The two groups were fed with commercial basal diet,and the compound probiotic experimental group was fed with basal diet supplemented with compound probiotics,in which the contents of Clostridium butyricum spores,Lactobacillus reuteri and Bacillus subtilis spores were 1×1010,1×1011 and 1×1010 CUF/kg,respectively.The body weight,feed intake and water intake of mice were counted every 4 d,and the experimental period was 13 d.On the 13 th day,the cecal contents of the mice were collected for analysis.[Results]There was no significant change in body weight and feed intake when compound probiotics were added to the diet.However,the addition of compound probiotics reduced the abundance of harmful bacteria such as Escherichia coli,urease-negative Helicobacter typhlonius and Salmonella enterica,while increasing the abundance of beneficial bacteria such as Anaerostipes hadrus,and the contents of IgG and IgM increased significantly(P<0.05).[Conclusions]In summary,the addition of compound probiotics could significantly improve the structure of intestinal microbial flora,increase the quantity of beneficial bacteria,reduce the quantity of harmful bacteria,and improve the immune function of mice.
基金supported by the earmarked fund for CARS-36the Science and Technology Major Projects of Inner Mongolia Autonomous Region(2021ZD0014)。
文摘One factor that shapes the establishment of early neonatal intestinal microbiota is environmental microbial exposure,and probiotic application has been shown to promote health and growth of piglets.Thus,this study hypothesized that environmental probiotic application in early days of life would be beneficial to newborn piglets.This study aimed to investigate the effect of spraying a compound probiotic fermented liquid(CPFL)into the living environment of piglets on their early growth performance and immunity.This work included 68 piglets,which were randomized into probiotic and control groups.Blood and fecal samples were collected at 0,3,7,14,and 21 days of age.Spraying CPFL significantly reshaped the microbiota composition of the delivery room environment,increased piglets’daily weight gain and weaning weight(P<0.001),and modulated piglets’serum cytokine levels(increases in Ig A,Ig G,and IL-10;decrease in IFN-γ;P<0.05 in each case)in piglets.Additionally,spraying CPFL during early days of life modified piglets’gut microbiota structure and diversity,increased the abundance of some potentially beneficial bacteria(such as Bacteroides uniformis,Butyricimonas virosa,Parabacteroides distasonis,and Phascolarctobacterium succinatutens)and decreased the abundance of Escherichia coli(P<0.05).Interestingly,CPFL application also significantly enhanced the gut microbial bioactive potential and levels of several serum metabolites involved in the metabolism of vitamins(B2,B3,B6,and E),medium/long-chain fatty acids(caproic,tetradecanoic,and peptadecanoic acids),and dicarboxylic acids(azelaic and sebacic acids).Our study demonstrated that spraying CPFL significantly could improve piglets’growth performance and immunity,and the beneficial effects are associated with changes in the gut microbiota and host metabolism.Our study has provided novel data for future development of probiotic-based health-promoting strategies and expanded our knowledge of probiotic application in animal husbandry.