In the present study, 20 selected Lactobacillus strains already characterized in a previous research for their capability to grow in conditions simulating the intestinal environment, their resistance to antibiotics, t...In the present study, 20 selected Lactobacillus strains already characterized in a previous research for their capability to grow in conditions simulating the intestinal environment, their resistance to antibiotics, their antibacterial activity and their adhesion capability to intestinal human Caco-2 TC7 and HT-29 MTX cell lines, were further investigated to explore more their probiotic properties. Growth behaviour in the presence of prebiotic (fructooligosac-charides (FOS) and lactulose) at a concentration of 2%, cholesterol removal by measuring the residual cholesterol in medium supplemented with cholesterol, ability to deconjugate bile salts using BSH enzyme and antioxidant activity of culture supernatant of Lactobacillus strains by ABTS·+ and DPPH methods were analyzed. All probiotic strains demonstrated important prebiotic assimilation (P > 0.05) even with OD600 > 3 after 30 h of contact, cholesterol removal ability with maximum percentage of 57% after 24 h of contact and they were found to liberate significantly (P < 0.05) more cholic acid with maximum of 0.40 mM of sodium glycocholate, 0.33 mM of sodium taurocholate and 0.41 mM of their mixte and scavenge both radicals with 52% and 2.19% of ABTS·+ and DPPH respectively. This study confirmed the suitability of these probiotic strains for application in functional food formulations especially where cholesterol reduction and antioxidant activity in food are needed to assess possible in vivo human health benefits.展开更多
体内胆固醇水平失衡会引起多种疾病,威胁人体健康。因此,控制体内胆固醇水平是目前普遍关注的问题。除常见的他汀和依齐麦布药物外,植物乳杆菌、干酪乳杆菌、发酵乳杆菌等乳酸菌也已被证实可有效降低体内的胆固醇水平。大量研究发现,促...体内胆固醇水平失衡会引起多种疾病,威胁人体健康。因此,控制体内胆固醇水平是目前普遍关注的问题。除常见的他汀和依齐麦布药物外,植物乳杆菌、干酪乳杆菌、发酵乳杆菌等乳酸菌也已被证实可有效降低体内的胆固醇水平。大量研究发现,促使乳酸菌起到降胆固醇作用的主要物质与其在生长过程中产生的一类代谢产物胆盐水解酶(Bile salt hydrolase,BSH)相关。该研究通过对胆盐水解酶特性、功能介绍,总结分析了胆盐水解酶降胆固醇机制,以期为降胆固醇的深入研究提供理论基础,并为益生菌开发应用提供理论依据与指导。展开更多
胆盐水解酶(bile salt hydrolase,BSH)是微生物生长、繁殖过程中产生的一种代谢产物,该酶具有降解结合胆盐的能力。大量研究发现,益生菌可通过BSH来提高其在肠道中的存活率和稳定性,还能通过BSH参与胆汁酸调控而实现其部分益生功能,如...胆盐水解酶(bile salt hydrolase,BSH)是微生物生长、繁殖过程中产生的一种代谢产物,该酶具有降解结合胆盐的能力。大量研究发现,益生菌可通过BSH来提高其在肠道中的存活率和稳定性,还能通过BSH参与胆汁酸调控而实现其部分益生功能,如降胆固醇等,因此益生菌BSH一直是研究的热点。为深入了解BSH,该文对BSH特性、在益生菌中的分布、生理功能以及对益生菌降低胆固醇、缓解炎症性肠病等方面发挥的作用进行了综述,期望为产BSH的益生菌在食品、保健品及临床应用提供理论依据。展开更多
文摘In the present study, 20 selected Lactobacillus strains already characterized in a previous research for their capability to grow in conditions simulating the intestinal environment, their resistance to antibiotics, their antibacterial activity and their adhesion capability to intestinal human Caco-2 TC7 and HT-29 MTX cell lines, were further investigated to explore more their probiotic properties. Growth behaviour in the presence of prebiotic (fructooligosac-charides (FOS) and lactulose) at a concentration of 2%, cholesterol removal by measuring the residual cholesterol in medium supplemented with cholesterol, ability to deconjugate bile salts using BSH enzyme and antioxidant activity of culture supernatant of Lactobacillus strains by ABTS·+ and DPPH methods were analyzed. All probiotic strains demonstrated important prebiotic assimilation (P > 0.05) even with OD600 > 3 after 30 h of contact, cholesterol removal ability with maximum percentage of 57% after 24 h of contact and they were found to liberate significantly (P < 0.05) more cholic acid with maximum of 0.40 mM of sodium glycocholate, 0.33 mM of sodium taurocholate and 0.41 mM of their mixte and scavenge both radicals with 52% and 2.19% of ABTS·+ and DPPH respectively. This study confirmed the suitability of these probiotic strains for application in functional food formulations especially where cholesterol reduction and antioxidant activity in food are needed to assess possible in vivo human health benefits.
文摘体内胆固醇水平失衡会引起多种疾病,威胁人体健康。因此,控制体内胆固醇水平是目前普遍关注的问题。除常见的他汀和依齐麦布药物外,植物乳杆菌、干酪乳杆菌、发酵乳杆菌等乳酸菌也已被证实可有效降低体内的胆固醇水平。大量研究发现,促使乳酸菌起到降胆固醇作用的主要物质与其在生长过程中产生的一类代谢产物胆盐水解酶(Bile salt hydrolase,BSH)相关。该研究通过对胆盐水解酶特性、功能介绍,总结分析了胆盐水解酶降胆固醇机制,以期为降胆固醇的深入研究提供理论基础,并为益生菌开发应用提供理论依据与指导。
文摘胆盐水解酶(bile salt hydrolase,BSH)是微生物生长、繁殖过程中产生的一种代谢产物,该酶具有降解结合胆盐的能力。大量研究发现,益生菌可通过BSH来提高其在肠道中的存活率和稳定性,还能通过BSH参与胆汁酸调控而实现其部分益生功能,如降胆固醇等,因此益生菌BSH一直是研究的热点。为深入了解BSH,该文对BSH特性、在益生菌中的分布、生理功能以及对益生菌降低胆固醇、缓解炎症性肠病等方面发挥的作用进行了综述,期望为产BSH的益生菌在食品、保健品及临床应用提供理论依据。