In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem an...In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem and the eigenvalue properties are given, then the asymptotic formulas of eigenvalues and eigenfunctions are presented. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.展开更多
The purpose of this paper is to extend some fundamental spectral properties of regular Sturm-Liouville problems to special kind discontinuous boundary value problem, which consist of a Sturm-Liouville equation with pi...The purpose of this paper is to extend some fundamental spectral properties of regular Sturm-Liouville problems to special kind discontinuous boundary value problem, which consist of a Sturm-Liouville equation with piecewise continuous potential together with eigenvalue parameter on the boundary and transmission conditions. The authors suggest their own approach for finding asymptotic approximations formulas for eigenvalues and eigenfunctions of such discontinuous problems.展开更多
In this study, an impulsive boundary value problem, generated by Sturm-Liouville differential equation with the eigenvalue parameter contained in one boundary condition is considered. It is shown that the coefficients...In this study, an impulsive boundary value problem, generated by Sturm-Liouville differential equation with the eigenvalue parameter contained in one boundary condition is considered. It is shown that the coefficients of the problem are uniquely determined either by the Weyl function or by two given spectra.展开更多
On the condition that the interval of the problem shrinks to a point, we investigated the separated boundary conditions Sα,β of left-definite Sturm-Liouville problem, and answered the following question: Is there a...On the condition that the interval of the problem shrinks to a point, we investigated the separated boundary conditions Sα,β of left-definite Sturm-Liouville problem, and answered the following question: Is there a co ∈ J such that Sα,β is always left-definite or semi-left-definite for the Sturm-Liouville equation for each c ∈ (a, co)?展开更多
In this paper we present and test a numerical method for computing eigenvalues of 4th order Sturm-Liouville (SL) differential operators on finite intervals with regular boundary conditions. This method is a 4th order ...In this paper we present and test a numerical method for computing eigenvalues of 4th order Sturm-Liouville (SL) differential operators on finite intervals with regular boundary conditions. This method is a 4th order shooting method based on Magnus expansions (MG4) which use MG4 shooting as the integrator. This method is similar to the SLEUTH (Sturm-Liouville Eigenvalues Using Theta Matrices) method of Greenberg and Marletta which uses the 2nd order Pruess method (also known as the MG2 shooting method) for the integrator. This method often achieves near machine precision accuracies, and some comparisons of its performance against the well-known SLEUTH software package are presented.展开更多
In this paper, we study three inverse nodal problems for the Sturm-Liouville operator with different nonlocal integral conditions. We get the conclusion that the potential function can be determined by a dense nodal s...In this paper, we study three inverse nodal problems for the Sturm-Liouville operator with different nonlocal integral conditions. We get the conclusion that the potential function can be determined by a dense nodal subset uniquely. And we present some constructive procedures to solve the inverse nodal problems.展开更多
文摘In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem and the eigenvalue properties are given, then the asymptotic formulas of eigenvalues and eigenfunctions are presented. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.
文摘The purpose of this paper is to extend some fundamental spectral properties of regular Sturm-Liouville problems to special kind discontinuous boundary value problem, which consist of a Sturm-Liouville equation with piecewise continuous potential together with eigenvalue parameter on the boundary and transmission conditions. The authors suggest their own approach for finding asymptotic approximations formulas for eigenvalues and eigenfunctions of such discontinuous problems.
基金supported by Cumhuriyet University Scientific Research Project (CUBAP) No: F-371
文摘In this study, an impulsive boundary value problem, generated by Sturm-Liouville differential equation with the eigenvalue parameter contained in one boundary condition is considered. It is shown that the coefficients of the problem are uniquely determined either by the Weyl function or by two given spectra.
基金Supported by the National Natural Science Foundation of China (10761004)
文摘On the condition that the interval of the problem shrinks to a point, we investigated the separated boundary conditions Sα,β of left-definite Sturm-Liouville problem, and answered the following question: Is there a co ∈ J such that Sα,β is always left-definite or semi-left-definite for the Sturm-Liouville equation for each c ∈ (a, co)?
文摘In this paper we present and test a numerical method for computing eigenvalues of 4th order Sturm-Liouville (SL) differential operators on finite intervals with regular boundary conditions. This method is a 4th order shooting method based on Magnus expansions (MG4) which use MG4 shooting as the integrator. This method is similar to the SLEUTH (Sturm-Liouville Eigenvalues Using Theta Matrices) method of Greenberg and Marletta which uses the 2nd order Pruess method (also known as the MG2 shooting method) for the integrator. This method often achieves near machine precision accuracies, and some comparisons of its performance against the well-known SLEUTH software package are presented.
文摘In this paper, we study three inverse nodal problems for the Sturm-Liouville operator with different nonlocal integral conditions. We get the conclusion that the potential function can be determined by a dense nodal subset uniquely. And we present some constructive procedures to solve the inverse nodal problems.