The processing of measuri ng data plays an important role in reverse engineering. Based on grey system the ory, we first propose some methods to the processing of measuring data in revers e engineering. The measured d...The processing of measuri ng data plays an important role in reverse engineering. Based on grey system the ory, we first propose some methods to the processing of measuring data in revers e engineering. The measured data usually have some abnormalities. When the abnor mal data are eliminated by filtering, blanks are created. The grey generation an d GM(1,1) are used to create new data for these blanks. For the uneven data sequ en ce created by measuring error, the mean generation is used to smooth it and then the stepwise and smooth generations are used to improve the data sequence.展开更多
Up to now the imported commercial scanning probe microscope(SPM) has not an automatic error correcting and reducing system.In this paper a software system is presented to solve this problem.This software system gives ...Up to now the imported commercial scanning probe microscope(SPM) has not an automatic error correcting and reducing system.In this paper a software system is presented to solve this problem.This software system gives the average distance between the centers of mass of two adjacent atoms on the same horizontal line and its mean square root as well as the atoms shape and center of mass by filtering the measured image of a standard sample-highly oriented pyrolysis graphite(HOPG).This system forms the basis of SPMs automatic measurement error correcting.展开更多
Traffic monitoring is of major importance for enforcing traffic management policies.To accomplish this task,the detection of vehicle can be achieved by exploiting image analysis techniques.In this paper,a solution is ...Traffic monitoring is of major importance for enforcing traffic management policies.To accomplish this task,the detection of vehicle can be achieved by exploiting image analysis techniques.In this paper,a solution is presented to obtain various traffic parameters through vehicular video detection system(VVDS).VVDS exploits the algorithm based on virtual loops to detect moving vehicle in real time.This algorithm uses the background differencing method,and vehicles can be detected through luminance difference of pixels between background image and current image.Furthermore a novel technology named as spatio-temporal image sequences analysis is applied to background differencing to improve detection accuracy.Then a hardware implementation of a digital signal processing (DSP) based board is described in detail and the board can simultaneously process four-channel video from different cameras. The benefit of usage of DSP is that images of a roadway can be processed at frame rate due to DSP′s high performance.In the end,VVDS is tested on real-world scenes and experiment results show that the system is both fast and robust to the surveillance of transportation.展开更多
A digital modeling system method is put forward for modeling constitutive relation of geomaterial including digital image subsystem for deformation measurement, numerical modeling subsystem and numerical simulation su...A digital modeling system method is put forward for modeling constitutive relation of geomaterial including digital image subsystem for deformation measurement, numerical modeling subsystem and numerical simulation subsystem. A non-contact measurement method based on digital image processing is introduced to improve measurement of specimen deformation. Based on the method, a series of conventional tri-axial compression tests under diverse stress paths are done. Then an elasto-plastic constitutive model of soil is acquired through the numerical method of modeling constitutive law for geomaterial. Two examples of specimen deformation and ground subsidence are presented and discussed. It indicated that this method can rationally simulate the stress-strain relationship of soil, which reflects the effect of stress path on soil stress-strain relationship.展开更多
The prognostics health management(PHM)fromthe systematic viewis critical to the healthy continuous operation of processmanufacturing systems(PMS),with different kinds of dynamic interference events.This paper proposes...The prognostics health management(PHM)fromthe systematic viewis critical to the healthy continuous operation of processmanufacturing systems(PMS),with different kinds of dynamic interference events.This paper proposes a three leveled digital twinmodel for the systematic PHMof PMSs.The unit-leveled digital twinmodel of each basic device unit of PMSs is constructed based on edge computing,which can provide real-time monitoring and analysis of the device status.The station-leveled digital twin models in the PMSs are designed to optimize and control the process parameters,which are deployed for the manufacturing execution on the fog server.The shop-leveled digital twin maintenancemodel is designed for production planning,which gives production instructions fromthe private industrial cloud server.To cope with the dynamic disturbances of a PMS,a big data-driven framework is proposed to control the three-level digital twin models,which contains indicator prediction,influence evaluation,and decisionmaking.Finally,a case study with a real chemical fiber system is introduced to illustrate the effectiveness of the digital twin model with edge-fog-cloud computing for the systematic PHM of PMSs.The result demonstrates that the three-leveled digital twin model for the systematic PHM in PMSs works well in the system’s respects.展开更多
Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasti...Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasting and casting blast parameters determination which have influence on the effect of casting blast have been researched with the combination of the ballistic theory and experience in mines. The integrated digital processing system of casting blast was developed in order to simplify the design process of casting blast, improve working efficiency and veracity of design result and comprehensively adopt the software programming method and the theory of casting blast. This system has achieved five functions, namely, the 3D visualization graphics management, the intelligent management of geological information, the intelligent design of casting blast, the analysis and prediction of the blasting effect and the automatic output of the design results. Long-term application in opencast coal mines has shown that research results can not only reduce the specific explosive consumption and improve the blasting effect, but also have high value of popularization and application.展开更多
On the basis of modified atomic transformations the new WA-systems of Kravchenko functions are constructed.As an example the digital processing of time series of the various physical nature processing is considered.Th...On the basis of modified atomic transformations the new WA-systems of Kravchenko functions are constructed.As an example the digital processing of time series of the various physical nature processing is considered.The numerical experiments and physical analysis of the results confirm the efficiency of the proposed WA-systems of Kravchenko functions.展开更多
A principle and method of constructing the digital acquisition system is presented in this work,which is convenient for the study on the theories and algorithms of digital nuclear signal processing.The hardware system...A principle and method of constructing the digital acquisition system is presented in this work,which is convenient for the study on the theories and algorithms of digital nuclear signal processing.The hardware system of the digital acquisition system consists of front-end controller,waveform digitizer and PC workstation,on which the software system has been developed based on Visual C++under Windows environment.The alterable-frequency sampling(AFS)algorithm and the alterable-frequency trapezoidal filter(AFTF)algorithm have also been studied in the real-time environment,along with a digital nuclear spectrum acquisition system being set up based on the new algorithms and theγ-ray spectra of 241Am being shown.A useful experimental platform could be provided by this work for the successive work such as the development of global digitized nuclear measurement system and the study of digital nuclear signal processing.展开更多
Sonar image processing system is an important intelligent system of Autonomous Un-derwater Vehicle.Based on TMS320C30 high speed DSP,it is used to realize sonar imagecompression and underwater object detections includ...Sonar image processing system is an important intelligent system of Autonomous Un-derwater Vehicle.Based on TMS320C30 high speed DSP,it is used to realize sonar imagecompression and underwater object detections including obstacle recognition in real time.Inthis paper,the software and hardware designs of this system are introduced and the experi-mental results are given.展开更多
There are multiple processes and corresponding parameters in steel production, and combinations of these comprise various process routes.Different steel products require distinct process routes due to variations in pe...There are multiple processes and corresponding parameters in steel production, and combinations of these comprise various process routes.Different steel products require distinct process routes due to variations in performance targets.Thus, how to accurately set each key process parameter in certain process routes is an ongoing conundrum, because it not only requires a wealth of expert experience but also generates additional costs from the trial productions.In this paper, a new production design system for plate steels is proposed.The proposed system consists of methodology and function development.For methodology, multi-task Elastic Net, clustering, classification, and other methods are used to design process routes.Furthermore, the results are expressed in the form of parameter confidence intervals, which are close to practical application scenarios.For function development, the steel plate process route design function is developed on the Process Intelligent Data Application System(PIDAS) intelligent big data platform.The results demonstrate the method’s practical application value.展开更多
This fully digital beam position measurement instrument is designed for beam position monitoring and machine research in Shanghai Synchrotron Radiation Facility. The signals received from four position-sensitive detec...This fully digital beam position measurement instrument is designed for beam position monitoring and machine research in Shanghai Synchrotron Radiation Facility. The signals received from four position-sensitive detectors are narrow pulses with a repetition rate up to 499.654 MHz and a pulse width of around 100 ps, and their dynamic range could vary over more than 40 dB in machine research. By the employment of the under-sampling technique based on high-speed high-resolution A/D conversion, all the processing procedure is performed fully by the digital signal processing algorithms integrated in one single Field Programmable Gate Array. This system functions well in the laboratory and commissioning tests, demonstrating a position resolution (at the turn by turn rate of 694 kHz) better than 7 μm over the input amplitude range of -40 dBm to 10 dBm which is well beyond the requirement.展开更多
The ESS software package is prepared for electrical data processing in the fields of coal prospecting, hydrogeologicai engineering, and can be used in the other fields of electrical data processing. It can be operated...The ESS software package is prepared for electrical data processing in the fields of coal prospecting, hydrogeologicai engineering, and can be used in the other fields of electrical data processing. It can be operated on any kind of microcomputer which has an internal memories of more than 512kB.The ESS software package would be leading the office operation to an automatic data processing period and the field work free from the tedious, repeated data treating and mapping, so that the engineers would have more time to analyse and interpret field data. Undoubtedly, it is of benefit to improving the relibility of the geological evaluation.展开更多
In the construction sector, which is one of the major goals of the new economy, the company is aiming at a new constructive practice and upgrading of the built, using ICT (information and communications technology) ...In the construction sector, which is one of the major goals of the new economy, the company is aiming at a new constructive practice and upgrading of the built, using ICT (information and communications technology) technologies. So the focus is on new operating and organizational models of sustainable building processes in the architecture, engineering and construction sectors, which are based on three-dimensional models of digital technology BIM (building information modeling). It is intended as a human activity that improves building workflows and, through software and IFACs (industry foundation classes), manages flexibility, coordinates and optimizes operational choices on time, economic, and environmental sustainability parameters. The goal is a new interoperable building process that involves designers, contractors and businesses from programming to lifecycle building and maintenance through the integrated project delivery of the building. Dynamic architectures, interactive with efficient technological and constructive systems, are integrated with innovative products of complex nature and bi-directional performance, engineered, with energy storage and renewable resources. The methodologies are based, above all, on the adoption of BIM technologies with the digital project manager and the use of robotic technological tools. Digitization is applied for the design and construction of architectural and infrastructure artifacts, in interaction with intelligent, adaptive, nanotechnical and user-friendly materials and climate. The results are aimed at efficient buildings with user comfort and safety, accuracy, and risk monitoring with remote monitoring, highlighting VDC (visual design construction) in CID (computational intelligent design).展开更多
Recently,real-time processing systems for bio-signal of the muscles generated by the movement of the user have been developed.Finite impulse response(FIR)filter for bio-signal processing in bio-signal process systems ...Recently,real-time processing systems for bio-signal of the muscles generated by the movement of the user have been developed.Finite impulse response(FIR)filter for bio-signal processing in bio-signal process systems is composed of multiple multiplier and adder of high-area.This makes the chip area increase significantly.To solve this problem,a low-area digital FIR filter is proposed in this paper,which can reduce the chip area.展开更多
In this paper, we present an optimized design method for high-speed embedded image processing system using 32 bit floating-point Digital Signal Processor (DSP) and Complex Programmable Logic Device (CPLD). The DSP...In this paper, we present an optimized design method for high-speed embedded image processing system using 32 bit floating-point Digital Signal Processor (DSP) and Complex Programmable Logic Device (CPLD). The DSP acts as the main processor of the system: executes digital image processing algorithms and operates other devices such as image sensor and CPLD. The CPLD is used to acquire images and achieve complex logic control of the whole system. Some key technologies are introduced to enhance the performance of our system. In particular, the use of DSP/BIOS tool to develop DSP applications makes our program run much more efficiently. As a result, this system can provide an excellent computing platform not only for executing complex image processing algorithms, but also for other digital signal processing or multi-channel data collection by choosing different sensors or Analog-to-Digital (A/D) converters.展开更多
The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is a...The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis.展开更多
Members of TMAS–the Swedish textile machinery association–displayed technologies completely in alignment with the major digitalisation theme of Techtextil and Texprocess 2024 exhibitions taking place in Frankfurt fr...Members of TMAS–the Swedish textile machinery association–displayed technologies completely in alignment with the major digitalisation theme of Techtextil and Texprocess 2024 exhibitions taking place in Frankfurt from April 23-26th.展开更多
In this work,the possibility of adaptive algorithm in WIM(weight-in-motion)systems,in which fibre optic sensors are used,is shown.Appointment of dynamic weighing device consists in determining the weight and type of v...In this work,the possibility of adaptive algorithm in WIM(weight-in-motion)systems,in which fibre optic sensors are used,is shown.Appointment of dynamic weighing device consists in determining the weight and type of vehicle.In this work an algorithm for processing the input data and fiber optic sensor to create the database used in the algorithm is presented.The results of the algorithm for the identification of vehicles are given.The conclusions are made and options of increasing the accuracy of the identification algorithm are considered.展开更多
Chaotic optical communication has shown large potential as a hardware encryption method in the physical layer.As an important figure of merit,the bit rate–distance product of chaotic optical communication has been co...Chaotic optical communication has shown large potential as a hardware encryption method in the physical layer.As an important figure of merit,the bit rate–distance product of chaotic optical communication has been continually improved to 30 Gb/s×340 km,but it is still far from the requirement for a deployed optical fiber communication system,which is beyond 100 Gb/s×1000 km.A chaotic carrier can be considered as an analog signal and suffers from fiber channel impairments,limiting the transmission distance of high-speed chaotic optical communications.To break the limit,we propose and experimentally demonstrate a pilot-based digital signal processing scheme for coherent chaotic optical communication combined with deep-learning-based chaotic synchronization.Both transmission impairment recovery and chaotic synchronization are realized in the digital domain.The frequency offset of the lasers is accurately estimated and compensated by determining the location of the pilot tone in the frequency domain,and the equalization and phase noise compensation are jointly performed by the least mean square algorithm through the time domain pilot symbols.Using the proposed method,100 Gb∕s chaotically encrypted quadrature phase-shift keying(QPSK)signal over 800 km single-mode fiber(SMF)transmission is experimentally demonstrated.In order to enhance security,40 Gb∕s real-time chaotically encrypted QPSK signal over 800 km SMF transmission is realized by inserting pilot symbols and tone in a field-programmable gate array.This method provides a feasible approach to promote the practical application of chaotic optical communications and guarantees the high security of chaotic encryption.展开更多
文摘The processing of measuri ng data plays an important role in reverse engineering. Based on grey system the ory, we first propose some methods to the processing of measuring data in revers e engineering. The measured data usually have some abnormalities. When the abnor mal data are eliminated by filtering, blanks are created. The grey generation an d GM(1,1) are used to create new data for these blanks. For the uneven data sequ en ce created by measuring error, the mean generation is used to smooth it and then the stepwise and smooth generations are used to improve the data sequence.
文摘Up to now the imported commercial scanning probe microscope(SPM) has not an automatic error correcting and reducing system.In this paper a software system is presented to solve this problem.This software system gives the average distance between the centers of mass of two adjacent atoms on the same horizontal line and its mean square root as well as the atoms shape and center of mass by filtering the measured image of a standard sample-highly oriented pyrolysis graphite(HOPG).This system forms the basis of SPMs automatic measurement error correcting.
文摘Traffic monitoring is of major importance for enforcing traffic management policies.To accomplish this task,the detection of vehicle can be achieved by exploiting image analysis techniques.In this paper,a solution is presented to obtain various traffic parameters through vehicular video detection system(VVDS).VVDS exploits the algorithm based on virtual loops to detect moving vehicle in real time.This algorithm uses the background differencing method,and vehicles can be detected through luminance difference of pixels between background image and current image.Furthermore a novel technology named as spatio-temporal image sequences analysis is applied to background differencing to improve detection accuracy.Then a hardware implementation of a digital signal processing (DSP) based board is described in detail and the board can simultaneously process four-channel video from different cameras. The benefit of usage of DSP is that images of a roadway can be processed at frame rate due to DSP′s high performance.In the end,VVDS is tested on real-world scenes and experiment results show that the system is both fast and robust to the surveillance of transportation.
文摘A digital modeling system method is put forward for modeling constitutive relation of geomaterial including digital image subsystem for deformation measurement, numerical modeling subsystem and numerical simulation subsystem. A non-contact measurement method based on digital image processing is introduced to improve measurement of specimen deformation. Based on the method, a series of conventional tri-axial compression tests under diverse stress paths are done. Then an elasto-plastic constitutive model of soil is acquired through the numerical method of modeling constitutive law for geomaterial. Two examples of specimen deformation and ground subsidence are presented and discussed. It indicated that this method can rationally simulate the stress-strain relationship of soil, which reflects the effect of stress path on soil stress-strain relationship.
基金supported by the Fundamental Research Funds for The Central Universities(Grant No.2232021A-08)National Natural Science Foundation of China(GrantNo.51905091)Shanghai Sailing Program(Grand No.19YF1401500).
文摘The prognostics health management(PHM)fromthe systematic viewis critical to the healthy continuous operation of processmanufacturing systems(PMS),with different kinds of dynamic interference events.This paper proposes a three leveled digital twinmodel for the systematic PHMof PMSs.The unit-leveled digital twinmodel of each basic device unit of PMSs is constructed based on edge computing,which can provide real-time monitoring and analysis of the device status.The station-leveled digital twin models in the PMSs are designed to optimize and control the process parameters,which are deployed for the manufacturing execution on the fog server.The shop-leveled digital twin maintenancemodel is designed for production planning,which gives production instructions fromthe private industrial cloud server.To cope with the dynamic disturbances of a PMS,a big data-driven framework is proposed to control the three-level digital twin models,which contains indicator prediction,influence evaluation,and decisionmaking.Finally,a case study with a real chemical fiber system is introduced to illustrate the effectiveness of the digital twin model with edge-fog-cloud computing for the systematic PHM of PMSs.The result demonstrates that the three-leveled digital twin model for the systematic PHM in PMSs works well in the system’s respects.
基金Project supported by the Fundamental Research Funds for the Central Universities,China
文摘Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasting and casting blast parameters determination which have influence on the effect of casting blast have been researched with the combination of the ballistic theory and experience in mines. The integrated digital processing system of casting blast was developed in order to simplify the design process of casting blast, improve working efficiency and veracity of design result and comprehensively adopt the software programming method and the theory of casting blast. This system has achieved five functions, namely, the 3D visualization graphics management, the intelligent management of geological information, the intelligent design of casting blast, the analysis and prediction of the blasting effect and the automatic output of the design results. Long-term application in opencast coal mines has shown that research results can not only reduce the specific explosive consumption and improve the blasting effect, but also have high value of popularization and application.
基金Russian Foundation for Basic Research(RFBR)(No.12-02-90425)
文摘On the basis of modified atomic transformations the new WA-systems of Kravchenko functions are constructed.As an example the digital processing of time series of the various physical nature processing is considered.The numerical experiments and physical analysis of the results confirm the efficiency of the proposed WA-systems of Kravchenko functions.
基金Supported by National Natural Science Foundation of China(NSFC)projects(No.1075111)
文摘A principle and method of constructing the digital acquisition system is presented in this work,which is convenient for the study on the theories and algorithms of digital nuclear signal processing.The hardware system of the digital acquisition system consists of front-end controller,waveform digitizer and PC workstation,on which the software system has been developed based on Visual C++under Windows environment.The alterable-frequency sampling(AFS)algorithm and the alterable-frequency trapezoidal filter(AFTF)algorithm have also been studied in the real-time environment,along with a digital nuclear spectrum acquisition system being set up based on the new algorithms and theγ-ray spectra of 241Am being shown.A useful experimental platform could be provided by this work for the successive work such as the development of global digitized nuclear measurement system and the study of digital nuclear signal processing.
基金the High Technology Research and Development Programme of china.
文摘Sonar image processing system is an important intelligent system of Autonomous Un-derwater Vehicle.Based on TMS320C30 high speed DSP,it is used to realize sonar imagecompression and underwater object detections including obstacle recognition in real time.Inthis paper,the software and hardware designs of this system are introduced and the experi-mental results are given.
文摘There are multiple processes and corresponding parameters in steel production, and combinations of these comprise various process routes.Different steel products require distinct process routes due to variations in performance targets.Thus, how to accurately set each key process parameter in certain process routes is an ongoing conundrum, because it not only requires a wealth of expert experience but also generates additional costs from the trial productions.In this paper, a new production design system for plate steels is proposed.The proposed system consists of methodology and function development.For methodology, multi-task Elastic Net, clustering, classification, and other methods are used to design process routes.Furthermore, the results are expressed in the form of parameter confidence intervals, which are close to practical application scenarios.For function development, the steel plate process route design function is developed on the Process Intelligent Data Application System(PIDAS) intelligent big data platform.The results demonstrate the method’s practical application value.
基金Supported by Knowledge Innovation Program of The Chinese Academy of Sciences (KJCX2-YW-N27)the National Natural Science Foundation of China (10875119)100 Talents Program of The Chinese Academy of Sciences
文摘This fully digital beam position measurement instrument is designed for beam position monitoring and machine research in Shanghai Synchrotron Radiation Facility. The signals received from four position-sensitive detectors are narrow pulses with a repetition rate up to 499.654 MHz and a pulse width of around 100 ps, and their dynamic range could vary over more than 40 dB in machine research. By the employment of the under-sampling technique based on high-speed high-resolution A/D conversion, all the processing procedure is performed fully by the digital signal processing algorithms integrated in one single Field Programmable Gate Array. This system functions well in the laboratory and commissioning tests, demonstrating a position resolution (at the turn by turn rate of 694 kHz) better than 7 μm over the input amplitude range of -40 dBm to 10 dBm which is well beyond the requirement.
文摘The ESS software package is prepared for electrical data processing in the fields of coal prospecting, hydrogeologicai engineering, and can be used in the other fields of electrical data processing. It can be operated on any kind of microcomputer which has an internal memories of more than 512kB.The ESS software package would be leading the office operation to an automatic data processing period and the field work free from the tedious, repeated data treating and mapping, so that the engineers would have more time to analyse and interpret field data. Undoubtedly, it is of benefit to improving the relibility of the geological evaluation.
文摘In the construction sector, which is one of the major goals of the new economy, the company is aiming at a new constructive practice and upgrading of the built, using ICT (information and communications technology) technologies. So the focus is on new operating and organizational models of sustainable building processes in the architecture, engineering and construction sectors, which are based on three-dimensional models of digital technology BIM (building information modeling). It is intended as a human activity that improves building workflows and, through software and IFACs (industry foundation classes), manages flexibility, coordinates and optimizes operational choices on time, economic, and environmental sustainability parameters. The goal is a new interoperable building process that involves designers, contractors and businesses from programming to lifecycle building and maintenance through the integrated project delivery of the building. Dynamic architectures, interactive with efficient technological and constructive systems, are integrated with innovative products of complex nature and bi-directional performance, engineered, with energy storage and renewable resources. The methodologies are based, above all, on the adoption of BIM technologies with the digital project manager and the use of robotic technological tools. Digitization is applied for the design and construction of architectural and infrastructure artifacts, in interaction with intelligent, adaptive, nanotechnical and user-friendly materials and climate. The results are aimed at efficient buildings with user comfort and safety, accuracy, and risk monitoring with remote monitoring, highlighting VDC (visual design construction) in CID (computational intelligent design).
基金The MKE(the Ministry of Knowledge Economy),Korea,under the ITRC(Information Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency) (NIPA-2012-H0301-12-2006)the Seoul Metropolitan Government,under the Seoul R & BD Program supervised by Seoul Business Agency(ST110039)
文摘Recently,real-time processing systems for bio-signal of the muscles generated by the movement of the user have been developed.Finite impulse response(FIR)filter for bio-signal processing in bio-signal process systems is composed of multiple multiplier and adder of high-area.This makes the chip area increase significantly.To solve this problem,a low-area digital FIR filter is proposed in this paper,which can reduce the chip area.
基金Supported by the National Natural Science Foundation of China (No.60472046)
文摘In this paper, we present an optimized design method for high-speed embedded image processing system using 32 bit floating-point Digital Signal Processor (DSP) and Complex Programmable Logic Device (CPLD). The DSP acts as the main processor of the system: executes digital image processing algorithms and operates other devices such as image sensor and CPLD. The CPLD is used to acquire images and achieve complex logic control of the whole system. Some key technologies are introduced to enhance the performance of our system. In particular, the use of DSP/BIOS tool to develop DSP applications makes our program run much more efficiently. As a result, this system can provide an excellent computing platform not only for executing complex image processing algorithms, but also for other digital signal processing or multi-channel data collection by choosing different sensors or Analog-to-Digital (A/D) converters.
基金supported by the National Science Foundation of China(10972015,11172015)the Beijing Natural Science Foundation(8162008).
文摘The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis.
文摘Members of TMAS–the Swedish textile machinery association–displayed technologies completely in alignment with the major digitalisation theme of Techtextil and Texprocess 2024 exhibitions taking place in Frankfurt from April 23-26th.
基金granted by RDSF funding,project“Fibre Optic Sensor Applications for Automatic Measurement of the Weight of Vehicles in Motion:Research and Development(2010-2012)”,No.2010/0280/2DP/2.1.1.1.0/10/APIA/VIAA/094,19.12.2010.
文摘In this work,the possibility of adaptive algorithm in WIM(weight-in-motion)systems,in which fibre optic sensors are used,is shown.Appointment of dynamic weighing device consists in determining the weight and type of vehicle.In this work an algorithm for processing the input data and fiber optic sensor to create the database used in the algorithm is presented.The results of the algorithm for the identification of vehicles are given.The conclusions are made and options of increasing the accuracy of the identification algorithm are considered.
基金supported by the National Nature Science Foundation of China (Grant No.62025503).
文摘Chaotic optical communication has shown large potential as a hardware encryption method in the physical layer.As an important figure of merit,the bit rate–distance product of chaotic optical communication has been continually improved to 30 Gb/s×340 km,but it is still far from the requirement for a deployed optical fiber communication system,which is beyond 100 Gb/s×1000 km.A chaotic carrier can be considered as an analog signal and suffers from fiber channel impairments,limiting the transmission distance of high-speed chaotic optical communications.To break the limit,we propose and experimentally demonstrate a pilot-based digital signal processing scheme for coherent chaotic optical communication combined with deep-learning-based chaotic synchronization.Both transmission impairment recovery and chaotic synchronization are realized in the digital domain.The frequency offset of the lasers is accurately estimated and compensated by determining the location of the pilot tone in the frequency domain,and the equalization and phase noise compensation are jointly performed by the least mean square algorithm through the time domain pilot symbols.Using the proposed method,100 Gb∕s chaotically encrypted quadrature phase-shift keying(QPSK)signal over 800 km single-mode fiber(SMF)transmission is experimentally demonstrated.In order to enhance security,40 Gb∕s real-time chaotically encrypted QPSK signal over 800 km SMF transmission is realized by inserting pilot symbols and tone in a field-programmable gate array.This method provides a feasible approach to promote the practical application of chaotic optical communications and guarantees the high security of chaotic encryption.