The idea of genetic engineering is introduced into the area of product design to improve the design efficiency. A method towards design process optimization based on the design process gene is proposed through analyzi...The idea of genetic engineering is introduced into the area of product design to improve the design efficiency. A method towards design process optimization based on the design process gene is proposed through analyzing the correlation between the design process gene and characteristics of the design process. The concept of the design process gene is analyzed and categorized into five categories that are the task specification gene, the concept design gene, the overall design gene, the detailed design gene and the processing design gene in the light of five design phases. The elements and their interactions involved in each kind of design process gene signprocess gene mapping is drawn with its structure disclosed based on its function that process gene.展开更多
Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard ...Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard to build a good-quality model of this batch process.Besides,due to the properties of this process,the reliability of the model must be taken into consideration when optimizing the MVs.In this work,an optimal design strategy based on the self-learning Gaussian process model(GPM) is proposed to control this kind of spatial batch process.The GPM is utilized as the internal model to predict the thicknesses of thin films on all spatial-distributed wafers using the limited data.Unlike the conventional model based design,the uncertainties of predictions provided by GPM are taken into consideration to guide the optimal design of manipulated variables so that the designing can be more prudent Besides,the GPM is also actively enhanced using as little data as possible based on the predictive uncertainties.The effectiveness of the proposed strategy is successfully demonstrated in an LPCVD process.展开更多
In this paper a method is developed to model the design process gene based on the extensible basic-element with the purpose of design process optimization and reuse. First, the principle of genetic engineering based d...In this paper a method is developed to model the design process gene based on the extensible basic-element with the purpose of design process optimization and reuse. First, the principle of genetic engineering based design process optimization and reuse is put forward and analyzed. Second, the extensible basic-element model of the design process gene is established based on the models of the design process base and the base pair through analyzing the concept and structure of the design process gene and the extensible basic-element as well as its extensibility. Third, the features of divergence and scalability of the extensible basic-element model of the design process gene are discussed for carrying out the extension translation to the design process gene by way of inserting, deleting and updating design process bases. Finally, an example of building extensible basic-element models for the design process base, base pair and design process gene in mechanical product design and the mutation process of the design process gene in airplane design is presented which demonstrates the application of the method proposed in this paper.展开更多
文摘The idea of genetic engineering is introduced into the area of product design to improve the design efficiency. A method towards design process optimization based on the design process gene is proposed through analyzing the correlation between the design process gene and characteristics of the design process. The concept of the design process gene is analyzed and categorized into five categories that are the task specification gene, the concept design gene, the overall design gene, the detailed design gene and the processing design gene in the light of five design phases. The elements and their interactions involved in each kind of design process gene signprocess gene mapping is drawn with its structure disclosed based on its function that process gene.
基金Supported by the National High Technology Research and Development Program of China(2014AA041803)the National Natural Science Foundation of China(61320106009)
文摘Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard to build a good-quality model of this batch process.Besides,due to the properties of this process,the reliability of the model must be taken into consideration when optimizing the MVs.In this work,an optimal design strategy based on the self-learning Gaussian process model(GPM) is proposed to control this kind of spatial batch process.The GPM is utilized as the internal model to predict the thicknesses of thin films on all spatial-distributed wafers using the limited data.Unlike the conventional model based design,the uncertainties of predictions provided by GPM are taken into consideration to guide the optimal design of manipulated variables so that the designing can be more prudent Besides,the GPM is also actively enhanced using as little data as possible based on the predictive uncertainties.The effectiveness of the proposed strategy is successfully demonstrated in an LPCVD process.
文摘In this paper a method is developed to model the design process gene based on the extensible basic-element with the purpose of design process optimization and reuse. First, the principle of genetic engineering based design process optimization and reuse is put forward and analyzed. Second, the extensible basic-element model of the design process gene is established based on the models of the design process base and the base pair through analyzing the concept and structure of the design process gene and the extensible basic-element as well as its extensibility. Third, the features of divergence and scalability of the extensible basic-element model of the design process gene are discussed for carrying out the extension translation to the design process gene by way of inserting, deleting and updating design process bases. Finally, an example of building extensible basic-element models for the design process base, base pair and design process gene in mechanical product design and the mutation process of the design process gene in airplane design is presented which demonstrates the application of the method proposed in this paper.